Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Up-regulation of brain-derived neurotrophic factor in primary afferent pathway regulates colon-to-bladder cross-sensitization in rat

Authors: Chun-Mei Xia, Melisa A Gulick, Sharon J Yu, John R Grider, Karnam S Murthy, John F Kuemmerle, Hamid I Akbarali, Li-Ya Qiao

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

In humans, inflammation of either the urinary bladder or the distal colon often results in sensory cross-sensitization between these organs. Limited information is known about the mechanisms underlying this clinical syndrome. Studies with animal models have demonstrated that activation of primary afferent pathways may have a role in mediating viscero-visceral cross-organ sensitization.

Methods

Colonic inflammation was induced by a single dose of tri-nitrobenzene sulfonic acid (TNBS) instilled intracolonically. The histology of the colon and the urinary bladder was examined by hematoxylin and eosin (H&E) stain. The protein expression of transient receptor potential (TRP) ion channel of the vanilloid type 1 (TRPV1) and brain-derived neurotrophic factor (BDNF) were examined by immunohistochemistry and/or western blot. The inter-micturition intervals and the quantity of urine voided were obtained from analysis of cystometrograms.

Results

At 3 days post TNBS treatment, the protein level of TRPV1 was increased by 2-fold (p < 0.05) in the inflamed distal colon when examined with western blot. TRPV1 was mainly expressed in the axonal terminals in submucosal area of the distal colon, and was co-localized with the neural marker PGP9.5. In sensory neurons in the dorsal root ganglia (DRG), BDNF expression was augmented by colonic inflammation examined in the L1 DRG, and was expressed in TRPV1 positive neurons. The elevated level of BDNF in L1 DRG by colonic inflammation was blunted by prolonged pre-treatment of the animals with the neurotoxin resiniferatoxin (RTX). Colonic inflammation did not alter either the morphology of the urinary bladder or the expression level of TRPV1 in this viscus. However, colonic inflammation decreased the inter-micturition intervals and decreased the quantities of urine voided. The increased bladder activity by colonic inflammation was attenuated by prolonged intraluminal treatment with RTX or treatment with intrathecal BDNF neutralizing antibody.

Conclusion

Acute colonic inflammation increases bladder activity without affecting bladder morphology. Primary afferent-mediated BDNF up-regulation in the sensory neurons regulates, at least in part, the bladder activity during colonic inflammation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Alagiri M, Chottiner S, Ratner V, Slade D, Hanno PM: Interstitial cystitis: unexplained associations with other chronic disease and pain syndromes. Urology 1997, 49:52–57.CrossRefPubMed Alagiri M, Chottiner S, Ratner V, Slade D, Hanno PM: Interstitial cystitis: unexplained associations with other chronic disease and pain syndromes. Urology 1997, 49:52–57.CrossRefPubMed
2.
go back to reference Banner MP: Genitourinary complications of inflammatory bowel disease. Radiol Clin North Am 1987, 25:199–209.PubMed Banner MP: Genitourinary complications of inflammatory bowel disease. Radiol Clin North Am 1987, 25:199–209.PubMed
3.
go back to reference Ben-Ami H, Ginesin Y, Behar DM, Fischer D, Edoute Y, Lavy A: Diagnosis and treatment of urinary tract complications in Crohn's disease: an experience over 15 years. Can J Gastroenterol 2002, 16:225–229.CrossRefPubMed Ben-Ami H, Ginesin Y, Behar DM, Fischer D, Edoute Y, Lavy A: Diagnosis and treatment of urinary tract complications in Crohn's disease: an experience over 15 years. Can J Gastroenterol 2002, 16:225–229.CrossRefPubMed
4.
go back to reference Manganiotis AN, Banner MP, Malkowicz SB: Urologic complications of Crohn's disease. Surg Clin North Am 2001, 81:197–215.CrossRefPubMed Manganiotis AN, Banner MP, Malkowicz SB: Urologic complications of Crohn's disease. Surg Clin North Am 2001, 81:197–215.CrossRefPubMed
5.
go back to reference Shield DE, Lytton B, Weiss RM, Schiff M Jr: Urologic complications of inflammatory bowel disease. J Urol 1976, 115:701–706.PubMed Shield DE, Lytton B, Weiss RM, Schiff M Jr: Urologic complications of inflammatory bowel disease. J Urol 1976, 115:701–706.PubMed
6.
go back to reference Bielefeldt K, Lamb K, Gebhart GF: Convergence of sensory pathways in the development of somatic and visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol 2006, 291:G658-G665.CrossRefPubMed Bielefeldt K, Lamb K, Gebhart GF: Convergence of sensory pathways in the development of somatic and visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol 2006, 291:G658-G665.CrossRefPubMed
7.
go back to reference Lamb K, Zhong F, Gebhart GF, Bielefeldt K: Experimental colitis in mice and sensitization of converging visceral and somatic afferent pathways. Am J Physiol Gastrointest Liver Physiol 2006, 290:G451-G457.CrossRefPubMed Lamb K, Zhong F, Gebhart GF, Bielefeldt K: Experimental colitis in mice and sensitization of converging visceral and somatic afferent pathways. Am J Physiol Gastrointest Liver Physiol 2006, 290:G451-G457.CrossRefPubMed
8.
go back to reference Zhou Q, Price DD, Caudle RM, Verne GN: Visceral and somatic hypersensitivity in a subset of rats following TNBS-induced colitis. Pain 2008, 134:9–15.CrossRefPubMed Zhou Q, Price DD, Caudle RM, Verne GN: Visceral and somatic hypersensitivity in a subset of rats following TNBS-induced colitis. Pain 2008, 134:9–15.CrossRefPubMed
9.
go back to reference Miranda A, Peles S, Shaker R, Rudolph C, Sengupta JN: Neonatal nociceptive somatic stimulation differentially modifies the activity of spinal neurons in rats and results in altered somatic and visceral sensation. J Physiol 2006, 572:775–787.CrossRefPubMedPubMedCentral Miranda A, Peles S, Shaker R, Rudolph C, Sengupta JN: Neonatal nociceptive somatic stimulation differentially modifies the activity of spinal neurons in rats and results in altered somatic and visceral sensation. J Physiol 2006, 572:775–787.CrossRefPubMedPubMedCentral
10.
go back to reference Peles S, Miranda A, Shaker R, Sengupta JN: Acute nociceptive somatic stimulus sensitizes neurones in the spinal cord to colonic distension in the rat. J Physiol 2004, 560:291–302.CrossRefPubMedPubMedCentral Peles S, Miranda A, Shaker R, Sengupta JN: Acute nociceptive somatic stimulus sensitizes neurones in the spinal cord to colonic distension in the rat. J Physiol 2004, 560:291–302.CrossRefPubMedPubMedCentral
11.
go back to reference Pezzone MA, Liang R, Fraser MO: A model of neural cross-talk and irritation in the pelvis: implications for the overlap of chronic pelvic pain disorders. Gastroenterology 2005, 128:1953–1964.CrossRefPubMed Pezzone MA, Liang R, Fraser MO: A model of neural cross-talk and irritation in the pelvis: implications for the overlap of chronic pelvic pain disorders. Gastroenterology 2005, 128:1953–1964.CrossRefPubMed
12.
go back to reference Ustinova EE, Fraser MO, Pezzone MA: Colonic irritation in the rat sensitizes urinary bladder afferents to mechanical and chemical stimuli: an afferent origin of pelvic organ cross-sensitization. Am J Physiol Renal Physiol 2006, 290:1478–1487.CrossRef Ustinova EE, Fraser MO, Pezzone MA: Colonic irritation in the rat sensitizes urinary bladder afferents to mechanical and chemical stimuli: an afferent origin of pelvic organ cross-sensitization. Am J Physiol Renal Physiol 2006, 290:1478–1487.CrossRef
13.
go back to reference Brumovsky PR, Feng B, Xu L, McCarthy CJ, Gebhart GF: Cystitis increases colorectal afferent sensitivity in the mouse. Am J Physiol Gastrointest Liver Physiol 2009, 297:G1250-G1258.CrossRefPubMedPubMedCentral Brumovsky PR, Feng B, Xu L, McCarthy CJ, Gebhart GF: Cystitis increases colorectal afferent sensitivity in the mouse. Am J Physiol Gastrointest Liver Physiol 2009, 297:G1250-G1258.CrossRefPubMedPubMedCentral
14.
go back to reference Brumovsky PR, Gebhart GF: Visceral organ cross-sensitization - an integrated perspective. Auton Neurosci 2010, 153:106–115.CrossRef Brumovsky PR, Gebhart GF: Visceral organ cross-sensitization - an integrated perspective. Auton Neurosci 2010, 153:106–115.CrossRef
15.
go back to reference Malykhina AP: Neural mechanisms of pelvic organ cross-sensitization. Neuroscience 2007, 149:660–672.CrossRefPubMed Malykhina AP: Neural mechanisms of pelvic organ cross-sensitization. Neuroscience 2007, 149:660–672.CrossRefPubMed
17.
go back to reference Ustinova EE, Gutkin DW, Pezzone MA: Sensitization of pelvic nerve afferents and mast cell infiltration in the urinary bladder following chronic colonic irritation is mediated by neuropeptides. Am J Physiol Renal Physiol 2007, 292:F123-F130.CrossRefPubMed Ustinova EE, Gutkin DW, Pezzone MA: Sensitization of pelvic nerve afferents and mast cell infiltration in the urinary bladder following chronic colonic irritation is mediated by neuropeptides. Am J Physiol Renal Physiol 2007, 292:F123-F130.CrossRefPubMed
18.
go back to reference Malykhina AP, Qin C, Foreman RD, Akbarali HI: Colonic inflammation increases Na + currents in bladder sensory neurons. NeuroReport 2004, 15:2601–2605.CrossRefPubMed Malykhina AP, Qin C, Foreman RD, Akbarali HI: Colonic inflammation increases Na + currents in bladder sensory neurons. NeuroReport 2004, 15:2601–2605.CrossRefPubMed
19.
go back to reference Qiao LY, Grider JR: Up-regulation of calcitonin gene-related peptide and receptor tyrosine kinase TrkB in rat bladder afferent neurons following TNBS colitis. Exp Neurol 2007, 204:667–679.CrossRefPubMedPubMedCentral Qiao LY, Grider JR: Up-regulation of calcitonin gene-related peptide and receptor tyrosine kinase TrkB in rat bladder afferent neurons following TNBS colitis. Exp Neurol 2007, 204:667–679.CrossRefPubMedPubMedCentral
20.
go back to reference Qin C, Malykhina AP, Akbarali HI, Foreman RD: Cross-organ sensitization of lumbosacral spinal neurons receiving urinary bladder input in rats with inflamed colon. Gastroenterology 2005, 129:1967–1978.CrossRefPubMed Qin C, Malykhina AP, Akbarali HI, Foreman RD: Cross-organ sensitization of lumbosacral spinal neurons receiving urinary bladder input in rats with inflamed colon. Gastroenterology 2005, 129:1967–1978.CrossRefPubMed
21.
go back to reference De Schepper HU, De Winter BY, Van Nassauw L, Timmermans JP, Herman AG, Pelckmans PA, De Man JG: TRPV1 receptors on unmyelinated C-fibres mediate colitis-induced sensitization of pelvic afferent nerve fibres in rats. J Physiol 2008, 586:5247–5258.CrossRefPubMedPubMedCentral De Schepper HU, De Winter BY, Van Nassauw L, Timmermans JP, Herman AG, Pelckmans PA, De Man JG: TRPV1 receptors on unmyelinated C-fibres mediate colitis-induced sensitization of pelvic afferent nerve fibres in rats. J Physiol 2008, 586:5247–5258.CrossRefPubMedPubMedCentral
22.
go back to reference Jones RC, Xu L, Gebhart GF: The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci 2005, 25:10981–10989.CrossRefPubMed Jones RC, Xu L, Gebhart GF: The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci 2005, 25:10981–10989.CrossRefPubMed
23.
go back to reference Malin SA, Christianson JA, Bielefeldt K, Davis BM: TPRV1 expression defines functionally distinct pelvic colon afferents. J Neurosci 2009, 29:743–752.CrossRefPubMedPubMedCentral Malin SA, Christianson JA, Bielefeldt K, Davis BM: TPRV1 expression defines functionally distinct pelvic colon afferents. J Neurosci 2009, 29:743–752.CrossRefPubMedPubMedCentral
24.
go back to reference Miranda A, Nordstrom E, Mannem A, Smith C, Banerjee B, Sengupta JN: The role of transient receptor potential vanilloid 1 in mechanical and chemical visceral hyperalgesia following experimental colitis. Neuroscience 2007, 148:1021–1032.CrossRefPubMed Miranda A, Nordstrom E, Mannem A, Smith C, Banerjee B, Sengupta JN: The role of transient receptor potential vanilloid 1 in mechanical and chemical visceral hyperalgesia following experimental colitis. Neuroscience 2007, 148:1021–1032.CrossRefPubMed
25.
go back to reference Winston J, Shenoy M, Medley D, Naniwadekar A, Pasricha PJ: The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology 2007, 132:615–627.CrossRefPubMed Winston J, Shenoy M, Medley D, Naniwadekar A, Pasricha PJ: The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology 2007, 132:615–627.CrossRefPubMed
26.
go back to reference Yu L, Yang F, Luo H, Liu FY, Han JS, Xing GG, Wan Y: The role of TRPV1 in different subtypes of dorsal root ganglion neurons in rat chronic inflammatory nociception induced by complete Freund's adjuvant. Mol Pain 2008, 4:61–71.CrossRefPubMedPubMedCentral Yu L, Yang F, Luo H, Liu FY, Han JS, Xing GG, Wan Y: The role of TRPV1 in different subtypes of dorsal root ganglion neurons in rat chronic inflammatory nociception induced by complete Freund's adjuvant. Mol Pain 2008, 4:61–71.CrossRefPubMedPubMedCentral
27.
go back to reference Craft RM, Cohen SM, Porreca F: Long-lasting desensitization of bladder afferents following intravesical resiniferatoxin and capsaicin in the rat. Pain 1995, 61:317–323.CrossRefPubMed Craft RM, Cohen SM, Porreca F: Long-lasting desensitization of bladder afferents following intravesical resiniferatoxin and capsaicin in the rat. Pain 1995, 61:317–323.CrossRefPubMed
28.
go back to reference Cruz F, Guimaräes M, Silva C, Reis M: Suppression of bladder hyperreflexia by intravesical resiniferatoxin. Lancet 1997, 350:640–641.CrossRefPubMed Cruz F, Guimaräes M, Silva C, Reis M: Suppression of bladder hyperreflexia by intravesical resiniferatoxin. Lancet 1997, 350:640–641.CrossRefPubMed
29.
go back to reference Dray A, Bettaney J, Forster P: Resiniferatoxin, a potent capsaicinlike stimulator of peripheral nociceptors in the neonatal rat tail in vitro. Br J Pharmacol 1990, 99:323–326.CrossRefPubMedPubMedCentral Dray A, Bettaney J, Forster P: Resiniferatoxin, a potent capsaicinlike stimulator of peripheral nociceptors in the neonatal rat tail in vitro. Br J Pharmacol 1990, 99:323–326.CrossRefPubMedPubMedCentral
30.
go back to reference Szallasi A, Joo F, Blumberg PM: Duration of desensitization and ultrastructural changes in dorsal root ganglia in rats treated with resiniferatoxin, an ultrapotent capsaicin analog. Brain Res 1989, 503:68–72.CrossRefPubMed Szallasi A, Joo F, Blumberg PM: Duration of desensitization and ultrastructural changes in dorsal root ganglia in rats treated with resiniferatoxin, an ultrapotent capsaicin analog. Brain Res 1989, 503:68–72.CrossRefPubMed
31.
go back to reference Mozsik G, Vincze A, Szolcsanyi J: Four response stages of capsaicin-sensitive primary afferent neurons to capsaicin and its analog: gastric acid secretion, gastric mucosal damage and protection. J Gastroenterol Hepatol 2001, 16:1093–1097.CrossRefPubMed Mozsik G, Vincze A, Szolcsanyi J: Four response stages of capsaicin-sensitive primary afferent neurons to capsaicin and its analog: gastric acid secretion, gastric mucosal damage and protection. J Gastroenterol Hepatol 2001, 16:1093–1097.CrossRefPubMed
32.
go back to reference Chen TY, Corcos J, Camel M, Ponsot Y, le Tu M: Prospective, randomized, double-blind study of safety and tolerability of intravesical resiniferatoxin (RTX) in interstitial cystitis (IC). Int Urogynecol J Pelvic Floor Dysfunct 2005, 16:293–297.CrossRefPubMed Chen TY, Corcos J, Camel M, Ponsot Y, le Tu M: Prospective, randomized, double-blind study of safety and tolerability of intravesical resiniferatoxin (RTX) in interstitial cystitis (IC). Int Urogynecol J Pelvic Floor Dysfunct 2005, 16:293–297.CrossRefPubMed
33.
go back to reference Payne CK, Mosbaugh PG, Forrest JB, Evans RJ, Whitmore KE, Antoci JP, Perez-Marrero R, Jacoby K, Diokno AC, O'Reilly KJ, Griebling TL, Vasavada SP, Yu AS, Frumkin LR: Intravesical resiniferatoxin for the treatment of interstitial cystitis: a randomized, double-blind, placebo controlled trial. J Urol 2005, 173:1590–1594.CrossRefPubMed Payne CK, Mosbaugh PG, Forrest JB, Evans RJ, Whitmore KE, Antoci JP, Perez-Marrero R, Jacoby K, Diokno AC, O'Reilly KJ, Griebling TL, Vasavada SP, Yu AS, Frumkin LR: Intravesical resiniferatoxin for the treatment of interstitial cystitis: a randomized, double-blind, placebo controlled trial. J Urol 2005, 173:1590–1594.CrossRefPubMed
34.
go back to reference Qiao LY, Grider JR: Colitis elicits differential changes in the expression levels of receptor tyrosine kinase TrkA and TrkB in colonic afferent neurons: a possible involvement of axonal transport. Pain 2010, 151:117–127.CrossRefPubMedPubMedCentral Qiao LY, Grider JR: Colitis elicits differential changes in the expression levels of receptor tyrosine kinase TrkA and TrkB in colonic afferent neurons: a possible involvement of axonal transport. Pain 2010, 151:117–127.CrossRefPubMedPubMedCentral
35.
go back to reference Cho HJ, Kim JK, Zhou XF, Rush RA: Increased brain-derived neurotrophic factor immunoreactivity in rat dorsal root ganglia and spinal cord following peripheral inflammation. Brain Res 1997, 764:269–272.CrossRefPubMed Cho HJ, Kim JK, Zhou XF, Rush RA: Increased brain-derived neurotrophic factor immunoreactivity in rat dorsal root ganglia and spinal cord following peripheral inflammation. Brain Res 1997, 764:269–272.CrossRefPubMed
36.
go back to reference Mannion RJ, Costigan M, Decosterd I, Amaya F, Ma QP, Holstege JC, Ji RR, Acheson A, Lindsay RM, Wilkinson GA, Woolf CJ: Neurotrophins: peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc Natl Acad Sci USA 1999, 96:9385–9390.CrossRefPubMedPubMedCentral Mannion RJ, Costigan M, Decosterd I, Amaya F, Ma QP, Holstege JC, Ji RR, Acheson A, Lindsay RM, Wilkinson GA, Woolf CJ: Neurotrophins: peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc Natl Acad Sci USA 1999, 96:9385–9390.CrossRefPubMedPubMedCentral
37.
go back to reference Qiao LY, Gulick MA, Bowers J, Kuemmerle JF, Grider JR: Differential changes in brain-derived neurotrophic factor and extracellular signal-regulated kinase in rat primary afferent pathways with colitis. Neurogastroenterol Motil 2008, 20:928–938.CrossRefPubMed Qiao LY, Gulick MA, Bowers J, Kuemmerle JF, Grider JR: Differential changes in brain-derived neurotrophic factor and extracellular signal-regulated kinase in rat primary afferent pathways with colitis. Neurogastroenterol Motil 2008, 20:928–938.CrossRefPubMed
38.
go back to reference Groth R, Aanonsen L: Spinal brain-derived neurotrophic factor (BDNF) produces hyperalgesia in normal mice while antisense directed against either BDNF or trkB, prevent inflammation-induced hyperalgesia. Pain 2002, 100:171–181.CrossRefPubMed Groth R, Aanonsen L: Spinal brain-derived neurotrophic factor (BDNF) produces hyperalgesia in normal mice while antisense directed against either BDNF or trkB, prevent inflammation-induced hyperalgesia. Pain 2002, 100:171–181.CrossRefPubMed
39.
go back to reference Matayoshi S, Jiang N, Katafuchi T, Koga K, Furue H, Yasaka T, Nakatsuka T, Zhou XF, Kawasaki Y, Tanaka N, Yoshimura M: Actions of brain-derived neurotrophic factor on spinal nociceptive transmission during inflammation in the rat. J Physiol 2005, 569:685–695.CrossRefPubMedPubMedCentral Matayoshi S, Jiang N, Katafuchi T, Koga K, Furue H, Yasaka T, Nakatsuka T, Zhou XF, Kawasaki Y, Tanaka N, Yoshimura M: Actions of brain-derived neurotrophic factor on spinal nociceptive transmission during inflammation in the rat. J Physiol 2005, 569:685–695.CrossRefPubMedPubMedCentral
40.
go back to reference Delafoy L, Gelot A, Ardid D, Eschalier A, Bertrand C, Doherty AM, Diop L: Interactive involvement of brain derived neurotrophic factor, nerve growth factor, and calcitonin gene related peptide in colonic hypersensitivity in the rat. Gut 2006, 55:940–945.CrossRefPubMedPubMedCentral Delafoy L, Gelot A, Ardid D, Eschalier A, Bertrand C, Doherty AM, Diop L: Interactive involvement of brain derived neurotrophic factor, nerve growth factor, and calcitonin gene related peptide in colonic hypersensitivity in the rat. Gut 2006, 55:940–945.CrossRefPubMedPubMedCentral
41.
go back to reference Yang J, Yu Y, Yu H, Zuo X, Liu C, Gao L, Chen ZY, Li Y: The role of brain-derived neurotrophic factor in experimental inflammation of mouse gut. Eur J Pain 2010, 14:574–579.CrossRefPubMed Yang J, Yu Y, Yu H, Zuo X, Liu C, Gao L, Chen ZY, Li Y: The role of brain-derived neurotrophic factor in experimental inflammation of mouse gut. Eur J Pain 2010, 14:574–579.CrossRefPubMed
42.
go back to reference Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, Izquierdo I, Medina JH: BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci USA 2008, 105:2711–2716.CrossRefPubMedPubMedCentral Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, Izquierdo I, Medina JH: BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci USA 2008, 105:2711–2716.CrossRefPubMedPubMedCentral
43.
go back to reference Li WP, Xian C, Rush RA, Zhou XF: Upregulation of brain-derived neurotrophic factor and neuropeptide Y in the dorsal ascending sensory pathway following sciatic nerve injury in rat. Neurosci Lett 1999, 260:49–52.CrossRefPubMed Li WP, Xian C, Rush RA, Zhou XF: Upregulation of brain-derived neurotrophic factor and neuropeptide Y in the dorsal ascending sensory pathway following sciatic nerve injury in rat. Neurosci Lett 1999, 260:49–52.CrossRefPubMed
44.
go back to reference Zhou XF, Rush RA: Endogenous brain-derived neurotrophic factor is anterogradely transported in primary sensory neurons. Neuroscience 1996, 74:945–953.CrossRefPubMed Zhou XF, Rush RA: Endogenous brain-derived neurotrophic factor is anterogradely transported in primary sensory neurons. Neuroscience 1996, 74:945–953.CrossRefPubMed
45.
go back to reference di Mola FF, Friess H, Zhu ZW, Koliopanos A, Bley T, Di Sebastiano P, Innocenti P, Zimmermann A, Büchler MW: Nerve growth factor and Trk high affinity receptor (TrkA) gene expression in inflammatory bowel disease. Gut 2000, 46:670–679.CrossRefPubMed di Mola FF, Friess H, Zhu ZW, Koliopanos A, Bley T, Di Sebastiano P, Innocenti P, Zimmermann A, Büchler MW: Nerve growth factor and Trk high affinity receptor (TrkA) gene expression in inflammatory bowel disease. Gut 2000, 46:670–679.CrossRefPubMed
46.
go back to reference Sharkey KA, Kroese AB: Consequences of intestinal inflammation on the enteric nervous system: neuronal activation induced by inflammatory mediators. Anat Rec 2001, 262:79–90.CrossRefPubMed Sharkey KA, Kroese AB: Consequences of intestinal inflammation on the enteric nervous system: neuronal activation induced by inflammatory mediators. Anat Rec 2001, 262:79–90.CrossRefPubMed
47.
go back to reference Michael GJ, Averill S, Nitkunan A, Rattray M, Bennett DL, Yan Q, Priestley JV: Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J Neurosci 1997, 17:8476–8490.PubMed Michael GJ, Averill S, Nitkunan A, Rattray M, Bennett DL, Yan Q, Priestley JV: Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J Neurosci 1997, 17:8476–8490.PubMed
48.
go back to reference Applebaum AE, Vance WH, Coggeshall RE: Segmental localization of sensory cells that innervate the bladder. J Comp Neurol 1980, 192:203–209.CrossRefPubMed Applebaum AE, Vance WH, Coggeshall RE: Segmental localization of sensory cells that innervate the bladder. J Comp Neurol 1980, 192:203–209.CrossRefPubMed
49.
go back to reference Keast JR, de Groat WC: Segmental distribution and peptide content of primary afferent neurons innervating the urogenital organs and colon of male rats. J Comp Neurol 1992, 319:615–623.CrossRefPubMed Keast JR, de Groat WC: Segmental distribution and peptide content of primary afferent neurons innervating the urogenital organs and colon of male rats. J Comp Neurol 1992, 319:615–623.CrossRefPubMed
50.
go back to reference Berthoud HR, Blackshaw LA, Brookes SJ, Grundy D: Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterol Motil 2004, 16:(Suppl 1):28–33.CrossRef Berthoud HR, Blackshaw LA, Brookes SJ, Grundy D: Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterol Motil 2004, 16:(Suppl 1):28–33.CrossRef
51.
go back to reference Robinson DR, McNaughton PA, Evans ML, Hicks GA: Characterization of the primary spinal afferent innervation of the mouse colon using retrograde labeling. Neurogastroenterol Motil 2004, 16:113–124.CrossRefPubMed Robinson DR, McNaughton PA, Evans ML, Hicks GA: Characterization of the primary spinal afferent innervation of the mouse colon using retrograde labeling. Neurogastroenterol Motil 2004, 16:113–124.CrossRefPubMed
Metadata
Title
Up-regulation of brain-derived neurotrophic factor in primary afferent pathway regulates colon-to-bladder cross-sensitization in rat
Authors
Chun-Mei Xia
Melisa A Gulick
Sharon J Yu
John R Grider
Karnam S Murthy
John F Kuemmerle
Hamid I Akbarali
Li-Ya Qiao
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-30

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue