Skip to main content
Top
Published in: Molecular Cancer 1/2010

Open Access 01-12-2010 | Research

Unscheduled expression of CDC25B in S-phase leads to replicative stress and DNA damage

Authors: Béatrix Bugler, Estelle Schmitt, Bernadette Aressy, Bernard Ducommun

Published in: Molecular Cancer | Issue 1/2010

Login to get access

Abstract

Background

CDC25B phosphatase is a cell cycle regulator that plays a critical role in checkpoint control. Up-regulation of CDC25B expression has been documented in a variety of human cancers, however, the relationships with the alteration of the molecular mechanisms that lead to oncogenesis still remain unclear. To address this issue we have investigated, in model cell lines, the consequences of unscheduled and elevated CDC25B levels.

Results

We report that increased CDC25B expression leads to DNA damage in the absence of genotoxic treatment. H2AX phosphorylation is detected in S-phase cells and requires active replication. We also report that CDC25B expression impairs DNA replication and results in an increased recruitment of the CDC45 replication factor onto chromatin. Finally, we observed chromosomal aberrations that are also enhanced upon CDC25B expression.

Conclusion

Overall, our results demonstrate that a moderate and unscheduled increase in CDC25B level, as observed in a number of human tumours, is sufficient to overcome the S-phase checkpoint efficiency thus leading to replicative stress and genomic instability.
Appendix
Available only for authorised users
Literature
1.
go back to reference Aressy B, Ducommun B: Cell cycle control by the CDC25 phosphatases. Anticancer Agents Med Chem. 2008, 8: 818-824.CrossRefPubMed Aressy B, Ducommun B: Cell cycle control by the CDC25 phosphatases. Anticancer Agents Med Chem. 2008, 8: 818-824.CrossRefPubMed
2.
go back to reference Boutros R, Lobjois V, Ducommun B: CDC25 phosphatases in cancer cells: key players? Good targets?. Nat Rev Cancer. 2007, 7: 495-507. 10.1038/nrc2169CrossRefPubMed Boutros R, Lobjois V, Ducommun B: CDC25 phosphatases in cancer cells: key players? Good targets?. Nat Rev Cancer. 2007, 7: 495-507. 10.1038/nrc2169CrossRefPubMed
3.
go back to reference Garner-Hamrick PA, Fisher C: Antisense phosphorothioate oligonucleotides specifically down-regulate cdc25B causing S-phase delay and persistent antiproliferative effects. Int J Cancer. 1998, 76: 720-728. 10.1002/(SICI)1097-0215(19980529)76:5<720::AID-IJC18>3.0.CO;2-7CrossRefPubMed Garner-Hamrick PA, Fisher C: Antisense phosphorothioate oligonucleotides specifically down-regulate cdc25B causing S-phase delay and persistent antiproliferative effects. Int J Cancer. 1998, 76: 720-728. 10.1002/(SICI)1097-0215(19980529)76:5<720::AID-IJC18>3.0.CO;2-7CrossRefPubMed
4.
go back to reference Boutros R, Lobjois V, Ducommun B: CDC25B involvement in the centrosome duplication cycle and in microtubule nucleation. Cancer Res. 2007, 67: 11557-11564. 10.1158/0008-5472.CAN-07-2415CrossRefPubMed Boutros R, Lobjois V, Ducommun B: CDC25B involvement in the centrosome duplication cycle and in microtubule nucleation. Cancer Res. 2007, 67: 11557-11564. 10.1158/0008-5472.CAN-07-2415CrossRefPubMed
5.
go back to reference Malumbres M, Barbacid M: Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009, 9: 153-166. 10.1038/nrc2602CrossRefPubMed Malumbres M, Barbacid M: Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009, 9: 153-166. 10.1038/nrc2602CrossRefPubMed
6.
go back to reference Galaktionov K, Chen X, Beach D: Cdc25 cell-cycle phosphatase as a target of c-myc. Nature. 1996, 382: 511-517. 10.1038/382511a0CrossRefPubMed Galaktionov K, Chen X, Beach D: Cdc25 cell-cycle phosphatase as a target of c-myc. Nature. 1996, 382: 511-517. 10.1038/382511a0CrossRefPubMed
7.
go back to reference Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ, Tan Y, Ackerson T, Costa RH: Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol. 2005, 25: 10875-10894. 10.1128/MCB.25.24.10875-10894.2005PubMedCentralCrossRefPubMed Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ, Tan Y, Ackerson T, Costa RH: Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol. 2005, 25: 10875-10894. 10.1128/MCB.25.24.10875-10894.2005PubMedCentralCrossRefPubMed
8.
go back to reference Kanemori Y, Uto K, Sagata N: {beta}-TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases. Proc Natl Acad Sci USA. 2005, 102: 6279-6284. 10.1073/pnas.0501873102PubMedCentralCrossRefPubMed Kanemori Y, Uto K, Sagata N: {beta}-TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases. Proc Natl Acad Sci USA. 2005, 102: 6279-6284. 10.1073/pnas.0501873102PubMedCentralCrossRefPubMed
9.
go back to reference Kieffer I, Lorenzo C, Dozier C, Schmitt E, Ducommun B: Differential mitotic degradation of the CDC25B phosphatase variants. Oncogene. 2007, 26: 7847-7858. 10.1038/sj.onc.1210596CrossRefPubMed Kieffer I, Lorenzo C, Dozier C, Schmitt E, Ducommun B: Differential mitotic degradation of the CDC25B phosphatase variants. Oncogene. 2007, 26: 7847-7858. 10.1038/sj.onc.1210596CrossRefPubMed
10.
go back to reference Baldin V, Cans C, Knibiehler M, Ducommun B: Phosphorylation of human CDC25B phosphatase by CDK1-cyclin A triggers its proteasome-dependent degradation. J Biol Chem. 1997, 272: 32731-32734. 10.1074/jbc.272.52.32731CrossRefPubMed Baldin V, Cans C, Knibiehler M, Ducommun B: Phosphorylation of human CDC25B phosphatase by CDK1-cyclin A triggers its proteasome-dependent degradation. J Biol Chem. 1997, 272: 32731-32734. 10.1074/jbc.272.52.32731CrossRefPubMed
11.
go back to reference Aressy B, Bugler B, Valette A, Biard D, Ducommun B: Moderate variations in CDC25B protein levels modulate the response to DNA damaging agents. Cell Cycle. 2008, 7: 2234-2240. 10.4161/cc.7.14.6305CrossRefPubMed Aressy B, Bugler B, Valette A, Biard D, Ducommun B: Moderate variations in CDC25B protein levels modulate the response to DNA damaging agents. Cell Cycle. 2008, 7: 2234-2240. 10.4161/cc.7.14.6305CrossRefPubMed
12.
go back to reference Bugler B, Quaranta M, Aressy B, Brezak MC, Prevost G, Ducommun B: Genotoxic-activated G2-M checkpoint exit is dependent on CDC25B phosphatase expression. Mol Cancer Ther. 2006, 5: 1446-1451. 10.1158/1535-7163.MCT-06-0099CrossRefPubMed Bugler B, Quaranta M, Aressy B, Brezak MC, Prevost G, Ducommun B: Genotoxic-activated G2-M checkpoint exit is dependent on CDC25B phosphatase expression. Mol Cancer Ther. 2006, 5: 1446-1451. 10.1158/1535-7163.MCT-06-0099CrossRefPubMed
13.
go back to reference Bansal P, Lazo JS: Induction of Cdc25B regulates cell cycle resumption after genotoxic stress. Cancer Res. 2007, 67: 3356-3363. 10.1158/0008-5472.CAN-06-3685CrossRefPubMed Bansal P, Lazo JS: Induction of Cdc25B regulates cell cycle resumption after genotoxic stress. Cancer Res. 2007, 67: 3356-3363. 10.1158/0008-5472.CAN-06-3685CrossRefPubMed
14.
go back to reference van Vugt MA, Bras A, Medema RH: Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol Cell. 2004, 15: 799-811. 10.1016/j.molcel.2004.07.015CrossRefPubMed van Vugt MA, Bras A, Medema RH: Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol Cell. 2004, 15: 799-811. 10.1016/j.molcel.2004.07.015CrossRefPubMed
15.
go back to reference Blomberg I, Hoffmann I: Ectopic expression of Cdc25A accelerates the G(1)/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Mol Cell Biol. 1999, 19: 6183-6194.PubMedCentralCrossRefPubMed Blomberg I, Hoffmann I: Ectopic expression of Cdc25A accelerates the G(1)/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Mol Cell Biol. 1999, 19: 6183-6194.PubMedCentralCrossRefPubMed
16.
go back to reference Karlsson C, Katich S, Hagting A, Hoffmann I, Pines J: Cdc25B and Cdc25C differ markedly in their properties as initiators of mitosis. J Cell Biol. 1999, 146: 573-584. 10.1083/jcb.146.3.573PubMedCentralCrossRefPubMed Karlsson C, Katich S, Hagting A, Hoffmann I, Pines J: Cdc25B and Cdc25C differ markedly in their properties as initiators of mitosis. J Cell Biol. 1999, 146: 573-584. 10.1083/jcb.146.3.573PubMedCentralCrossRefPubMed
17.
go back to reference Turowski P, Franckhauser C, Morris MC, Vaglio P, Fernandez A, Lamb NJ: Functional cdc25C dual-specificity phosphatase is required for S-phase entry in human cells. Mol Biol Cell. 2003, 14: 2984-2998. 10.1091/mbc.E02-08-0515PubMedCentralCrossRefPubMed Turowski P, Franckhauser C, Morris MC, Vaglio P, Fernandez A, Lamb NJ: Functional cdc25C dual-specificity phosphatase is required for S-phase entry in human cells. Mol Biol Cell. 2003, 14: 2984-2998. 10.1091/mbc.E02-08-0515PubMedCentralCrossRefPubMed
18.
go back to reference Davezac N, Baldin V, Gabrielli B, Forrest A, Theis-Febvre N, Yashida M, Ducommun B: Regulation of CDC25B phosphatases subcellular localization. Oncogene. 2000, 19: 2179-2185. 10.1038/sj.onc.1203545CrossRefPubMed Davezac N, Baldin V, Gabrielli B, Forrest A, Theis-Febvre N, Yashida M, Ducommun B: Regulation of CDC25B phosphatases subcellular localization. Oncogene. 2000, 19: 2179-2185. 10.1038/sj.onc.1203545CrossRefPubMed
19.
go back to reference Zou L, Stillman B: Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase. Mol Cell Biol. 2000, 20: 3086-3096. 10.1128/MCB.20.9.3086-3096.2000PubMedCentralCrossRefPubMed Zou L, Stillman B: Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase. Mol Cell Biol. 2000, 20: 3086-3096. 10.1128/MCB.20.9.3086-3096.2000PubMedCentralCrossRefPubMed
20.
go back to reference Rodriguez R, Gagou ME, Meuth M: Apoptosis induced by replication inhibitors in Chk1-depleted cells is dependent upon the helicase cofactor Cdc45. Cell Death Differ. 2008, 15: 889-898. 10.1038/cdd.2008.4CrossRefPubMed Rodriguez R, Gagou ME, Meuth M: Apoptosis induced by replication inhibitors in Chk1-depleted cells is dependent upon the helicase cofactor Cdc45. Cell Death Differ. 2008, 15: 889-898. 10.1038/cdd.2008.4CrossRefPubMed
21.
go back to reference Shechter D, Costanzo V, Gautier J: ATR and ATM regulate the timing of DNA replication origin firing. Nat Cell Biol. 2004, 6: 648-655. 10.1038/ncb1145CrossRefPubMed Shechter D, Costanzo V, Gautier J: ATR and ATM regulate the timing of DNA replication origin firing. Nat Cell Biol. 2004, 6: 648-655. 10.1038/ncb1145CrossRefPubMed
22.
go back to reference Syljuasen RG, Sorensen CS, Hansen LT, Fugger K, Lundin C, Johansson F, Helleday T, Sehested M, Lukas J, Bartek J: Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol. 2005, 25: 3553-3562. 10.1128/MCB.25.9.3553-3562.2005PubMedCentralCrossRefPubMed Syljuasen RG, Sorensen CS, Hansen LT, Fugger K, Lundin C, Johansson F, Helleday T, Sehested M, Lukas J, Bartek J: Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol. 2005, 25: 3553-3562. 10.1128/MCB.25.9.3553-3562.2005PubMedCentralCrossRefPubMed
23.
go back to reference Seiler JA, Conti C, Syed A, Aladjem MI, Pommier Y: The intra-S-phase checkpoint affects both DNA replication initiation and elongation: single-cell and -DNA fiber analyses. Mol Cell Biol. 2007, 27: 5806-5818. 10.1128/MCB.02278-06PubMedCentralCrossRefPubMed Seiler JA, Conti C, Syed A, Aladjem MI, Pommier Y: The intra-S-phase checkpoint affects both DNA replication initiation and elongation: single-cell and -DNA fiber analyses. Mol Cell Biol. 2007, 27: 5806-5818. 10.1128/MCB.02278-06PubMedCentralCrossRefPubMed
24.
go back to reference Niida H, Tsuge S, Katsuno Y, Konishi A, Takeda N, Nakanishi M: Depletion of Chk1 leads to premature activation of Cdc2-cyclin B and mitotic catastrophe. J Biol Chem. 2005, 280: 39246-39252. 10.1074/jbc.M505009200CrossRefPubMed Niida H, Tsuge S, Katsuno Y, Konishi A, Takeda N, Nakanishi M: Depletion of Chk1 leads to premature activation of Cdc2-cyclin B and mitotic catastrophe. J Biol Chem. 2005, 280: 39246-39252. 10.1074/jbc.M505009200CrossRefPubMed
25.
go back to reference Lindqvist A, Kallstrom H, Lundgren A, Barsoum E, Rosenthal CK: Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome. J Cell Biol. 2005, 171: 35-45. 10.1083/jcb.200503066PubMedCentralCrossRefPubMed Lindqvist A, Kallstrom H, Lundgren A, Barsoum E, Rosenthal CK: Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome. J Cell Biol. 2005, 171: 35-45. 10.1083/jcb.200503066PubMedCentralCrossRefPubMed
26.
go back to reference Varmeh S, Manfredi JJ: Inappropriate activation of cyclin-dependent kinases by the phosphatase Cdc25b results in premature mitotic entry and triggers a p53-dependent checkpoint. J Biol Chem. 2009, 284: 9475-9488. 10.1074/jbc.M900037200PubMedCentralCrossRefPubMed Varmeh S, Manfredi JJ: Inappropriate activation of cyclin-dependent kinases by the phosphatase Cdc25b results in premature mitotic entry and triggers a p53-dependent checkpoint. J Biol Chem. 2009, 284: 9475-9488. 10.1074/jbc.M900037200PubMedCentralCrossRefPubMed
27.
go back to reference Feijoo C, Hall-Jackson C, Wu R, Jenkins D, Leitch J, Gilbert DM, Smythe C: Activation of mammalian Chk1 during DNA replication arrest: a role for Chk1 in the intra-S phase checkpoint monitoring replication origin firing. J Cell Biol. 2001, 154: 913-923. 10.1083/jcb.200104099PubMedCentralCrossRefPubMed Feijoo C, Hall-Jackson C, Wu R, Jenkins D, Leitch J, Gilbert DM, Smythe C: Activation of mammalian Chk1 during DNA replication arrest: a role for Chk1 in the intra-S phase checkpoint monitoring replication origin firing. J Cell Biol. 2001, 154: 913-923. 10.1083/jcb.200104099PubMedCentralCrossRefPubMed
28.
go back to reference Lam MH, Liu Q, Elledge SJ, Rosen JM: Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Cancer Cell. 2004, 6: 45-59. 10.1016/j.ccr.2004.06.015CrossRefPubMed Lam MH, Liu Q, Elledge SJ, Rosen JM: Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Cancer Cell. 2004, 6: 45-59. 10.1016/j.ccr.2004.06.015CrossRefPubMed
29.
go back to reference Wilsker D, Petermann E, Helleday T, Bunz F: Essential function of Chk1 can be uncoupled from DNA damage checkpoint and replication control. Proc Natl Acad Sci USA. 2008, 105: 20752-20757. 10.1073/pnas.0806917106PubMedCentralCrossRefPubMed Wilsker D, Petermann E, Helleday T, Bunz F: Essential function of Chk1 can be uncoupled from DNA damage checkpoint and replication control. Proc Natl Acad Sci USA. 2008, 105: 20752-20757. 10.1073/pnas.0806917106PubMedCentralCrossRefPubMed
30.
go back to reference Takeda DY, Dutta A: DNA replication and progression through S phase. Oncogene. 2005, 24: 2827-2843. 10.1038/sj.onc.1208616CrossRefPubMed Takeda DY, Dutta A: DNA replication and progression through S phase. Oncogene. 2005, 24: 2827-2843. 10.1038/sj.onc.1208616CrossRefPubMed
31.
go back to reference Alexandrow MG, Hamlin JL: Chromatin decondensation in S-phase involves recruitment of Cdk2 by Cdc45 and histone H1 phosphorylation. J Cell Biol. 2005, 168: 875-886. 10.1083/jcb.200409055PubMedCentralCrossRefPubMed Alexandrow MG, Hamlin JL: Chromatin decondensation in S-phase involves recruitment of Cdk2 by Cdc45 and histone H1 phosphorylation. J Cell Biol. 2005, 168: 875-886. 10.1083/jcb.200409055PubMedCentralCrossRefPubMed
32.
go back to reference Masuda T, Mimura S, Takisawa H: CDK- and Cdc45-dependent priming of the MCM complex on chromatin during S-phase in Xenopus egg extracts: possible activation of MCM helicase by association with Cdc45. Genes Cells. 2003, 8: 145-161. 10.1046/j.1365-2443.2003.00621.xCrossRefPubMed Masuda T, Mimura S, Takisawa H: CDK- and Cdc45-dependent priming of the MCM complex on chromatin during S-phase in Xenopus egg extracts: possible activation of MCM helicase by association with Cdc45. Genes Cells. 2003, 8: 145-161. 10.1046/j.1365-2443.2003.00621.xCrossRefPubMed
33.
go back to reference Edwards MC, Tutter AV, Cvetic C, Gilbert CH, Prokhorova TA, Walter JC: MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts. J Biol Chem. 2002, 277: 33049-33057. 10.1074/jbc.M204438200CrossRefPubMed Edwards MC, Tutter AV, Cvetic C, Gilbert CH, Prokhorova TA, Walter JC: MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts. J Biol Chem. 2002, 277: 33049-33057. 10.1074/jbc.M204438200CrossRefPubMed
34.
go back to reference Conti C, Sacca B, Herrick J, Lalou C, Pommier Y, Bensimon A: Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol Biol Cell. 2007, 18: 3059-3067. 10.1091/mbc.E06-08-0689PubMedCentralCrossRefPubMed Conti C, Sacca B, Herrick J, Lalou C, Pommier Y, Bensimon A: Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol Biol Cell. 2007, 18: 3059-3067. 10.1091/mbc.E06-08-0689PubMedCentralCrossRefPubMed
35.
go back to reference Petermann E, Maya-Mendoza A, Zachos G, Gillespie DA, Jackson DA, Caldecott KW: Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase. Mol Cell Biol. 2006, 26: 3319-3326. 10.1128/MCB.26.8.3319-3326.2006PubMedCentralCrossRefPubMed Petermann E, Maya-Mendoza A, Zachos G, Gillespie DA, Jackson DA, Caldecott KW: Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase. Mol Cell Biol. 2006, 26: 3319-3326. 10.1128/MCB.26.8.3319-3326.2006PubMedCentralCrossRefPubMed
36.
go back to reference Maya-Mendoza A, Petermann E, Gillespie DA, Caldecott KW, Jackson DA: Chk1 regulates the density of active replication origins during the vertebrate S phase. Embo J. 2007, 26: 2719-2731. 10.1038/sj.emboj.7601714PubMedCentralCrossRefPubMed Maya-Mendoza A, Petermann E, Gillespie DA, Caldecott KW, Jackson DA: Chk1 regulates the density of active replication origins during the vertebrate S phase. Embo J. 2007, 26: 2719-2731. 10.1038/sj.emboj.7601714PubMedCentralCrossRefPubMed
37.
go back to reference Woodward AM, Gohler T, Luciani MG, Oehlmann M, Ge X, Gartner A, Jackson DA, Blow JJ: Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol. 2006, 173: 673-683. 10.1083/jcb.200602108PubMedCentralCrossRefPubMed Woodward AM, Gohler T, Luciani MG, Oehlmann M, Ge X, Gartner A, Jackson DA, Blow JJ: Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol. 2006, 173: 673-683. 10.1083/jcb.200602108PubMedCentralCrossRefPubMed
38.
go back to reference Conti C, Seiler JA, Pommier Y: The mammalian DNA replication elongation checkpoint: implication of Chk1 and relationship with origin firing as determined by single DNA molecule and single cell analyses. Cell Cycle. 2007, 6: 2760-2767. 10.4161/cc.6.22.4932CrossRefPubMed Conti C, Seiler JA, Pommier Y: The mammalian DNA replication elongation checkpoint: implication of Chk1 and relationship with origin firing as determined by single DNA molecule and single cell analyses. Cell Cycle. 2007, 6: 2760-2767. 10.4161/cc.6.22.4932CrossRefPubMed
39.
go back to reference Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, Galloway DA, Gu W, Gautier J, Dalla-Favera R: Non-transcriptional control of DNA replication by c-Myc. Nature. 2007, 448: 445-451. 10.1038/nature05953CrossRefPubMed Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, Galloway DA, Gu W, Gautier J, Dalla-Favera R: Non-transcriptional control of DNA replication by c-Myc. Nature. 2007, 448: 445-451. 10.1038/nature05953CrossRefPubMed
40.
go back to reference Cangi MG, Piccinin S, Pecciarini L, Talarico A, Dal Cin E, Grassi S, Grizzo A, Maestro R, Doglioni C: Constitutive overexpression of CDC25A in primary human mammary epithelial cells results in both defective DNA damage response and chromosomal breaks at fragile sites. Int J Cancer. 2008, 123: 1466-1471. 10.1002/ijc.23659CrossRefPubMed Cangi MG, Piccinin S, Pecciarini L, Talarico A, Dal Cin E, Grassi S, Grizzo A, Maestro R, Doglioni C: Constitutive overexpression of CDC25A in primary human mammary epithelial cells results in both defective DNA damage response and chromosomal breaks at fragile sites. Int J Cancer. 2008, 123: 1466-1471. 10.1002/ijc.23659CrossRefPubMed
41.
go back to reference Lindqvist A, Kallstrom H, Karlsson Rosenthal C: Characterisation of Cdc25B localisation and nuclear export during the cell cycle and in response to stress. J Cell Sci. 2004, 117: 4979-4990. 10.1242/jcs.01395CrossRefPubMed Lindqvist A, Kallstrom H, Karlsson Rosenthal C: Characterisation of Cdc25B localisation and nuclear export during the cell cycle and in response to stress. J Cell Sci. 2004, 117: 4979-4990. 10.1242/jcs.01395CrossRefPubMed
42.
go back to reference Scian MJ, Carchman EH, Mohanraj L, Stagliano KE, Anderson MA, Deb D, Crane BM, Kiyono T, Windle B, Deb SP, Deb S: Wild-type p53 and p73 negatively regulate expression of proliferation related genes. Oncogene. 2008, 27: 2583-2593. 10.1038/sj.onc.1210898CrossRefPubMed Scian MJ, Carchman EH, Mohanraj L, Stagliano KE, Anderson MA, Deb D, Crane BM, Kiyono T, Windle B, Deb SP, Deb S: Wild-type p53 and p73 negatively regulate expression of proliferation related genes. Oncogene. 2008, 27: 2583-2593. 10.1038/sj.onc.1210898CrossRefPubMed
43.
go back to reference Galaktionov K, Lee AK, Eckstein J, Draetta G, Meckler J, Loda M, Beach D: CDC25 phosphatases as potential human oncogenes. Science. 1995, 269: 1575-1577. 10.1126/science.7667636CrossRefPubMed Galaktionov K, Lee AK, Eckstein J, Draetta G, Meckler J, Loda M, Beach D: CDC25 phosphatases as potential human oncogenes. Science. 1995, 269: 1575-1577. 10.1126/science.7667636CrossRefPubMed
44.
go back to reference Halazonetis TD, Gorgoulis VG, Bartek J: An oncogene-induced DNA damage model for cancer development. Science. 2008, 319: 1352-1355. 10.1126/science.1140735CrossRefPubMed Halazonetis TD, Gorgoulis VG, Bartek J: An oncogene-induced DNA damage model for cancer development. Science. 2008, 319: 1352-1355. 10.1126/science.1140735CrossRefPubMed
45.
go back to reference Kristjansdottir K, Rudolph J: Cdc25 phosphatases and cancer. Chem Biol. 2004, 11: 1043-1051. 10.1016/j.chembiol.2004.07.007CrossRefPubMed Kristjansdottir K, Rudolph J: Cdc25 phosphatases and cancer. Chem Biol. 2004, 11: 1043-1051. 10.1016/j.chembiol.2004.07.007CrossRefPubMed
46.
go back to reference Bauerschmidt C, Pollok S, Kremmer E, Nasheuer HP, Grosse F: Interactions of human Cdc45 with the Mcm2-7 complex, the GINS complex, and DNA polymerases delta and epsilon during S phase. Genes Cells. 2007, 12: 745-758.PubMed Bauerschmidt C, Pollok S, Kremmer E, Nasheuer HP, Grosse F: Interactions of human Cdc45 with the Mcm2-7 complex, the GINS complex, and DNA polymerases delta and epsilon during S phase. Genes Cells. 2007, 12: 745-758.PubMed
47.
go back to reference Esmenjaud-Mailhat C, Lobjois V, Froment C, Golsteyn RM, Monsarrat B, Ducommun B: Phosphorylation of CDC25C at S263 controls its intracellular localisation. FEBS Lett. 2007, 581: 3979-3985. 10.1016/j.febslet.2007.07.024CrossRefPubMed Esmenjaud-Mailhat C, Lobjois V, Froment C, Golsteyn RM, Monsarrat B, Ducommun B: Phosphorylation of CDC25C at S263 controls its intracellular localisation. FEBS Lett. 2007, 581: 3979-3985. 10.1016/j.febslet.2007.07.024CrossRefPubMed
Metadata
Title
Unscheduled expression of CDC25B in S-phase leads to replicative stress and DNA damage
Authors
Béatrix Bugler
Estelle Schmitt
Bernadette Aressy
Bernard Ducommun
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2010
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-9-29

Other articles of this Issue 1/2010

Molecular Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine