Skip to main content
Top
Published in: BMC Urology 1/2016

Open Access 01-12-2016 | Research article

Uni-axial stretch induces actin stress fiber reorganization and activates c-Jun NH2 terminal kinase via RhoA and Rho kinase in human bladder smooth muscle cells

Authors: Nobuhiro Kushida, Osamu Yamaguchi, Yohei Kawashima, Hidenori Akaihata, Junya Hata, Kei Ishibashi, Ken Aikawa, Yoshiyuki Kojima

Published in: BMC Urology | Issue 1/2016

Login to get access

Abstract

Background

Excessive mechanical overload may be involved in bladder wall remodelling. Since the activity of Rho kinase is known to be upregulated in the obstructed bladder, we investigate the roles of the RhoA/Rho kinase pathway in mechanical overloaded bladder smooth muscle cells.

Methods

Human bladder smooth muscle cells were stimulated on silicon culture plates by 15 % elongated uni-axial cyclic stretch at 1 Hz. The activity of c-Jun NH2-terminal kinase was measured by western blotting and actin stress fibers were observed by stained with phallotoxin conjugated with Alexa-Fluor 594.

Results

The activity of c-Jun NH2-terminal kinase 1 peaked at 30 min (4.7-fold increase vs. before stretch) and this activity was partially abrogated by the RhoA inhibitor, C3 exoenzoyme or by the Rho kinase inhibitor, Y-27632. Stretch induced the strong formation of actin stress fibers and these fibers re-orientated in a direction that was perpendicular to the stretch direction. The average angle of the fibers from the perpendicular to the direction of stretch was significantly different between before, and 4 h after, stretch. Actin stress fibers reorganization was also suppressed by the C3 exoenzyme or Y-27632.

Conclusions

Bladder smooth muscle cells appear to have elaborate mechanisms for sensing mechanical stress and for adapting to mechanical stress overload by cytoskeletal remodeling and by activating cell growth signals such as c-Jun NH2-terminal kinase via RhoA/Rho kinase pathways.
Literature
1.
go back to reference Gilpin SA, Gosling JA, Barnard RJ. Morphological and morphometric studies of the human obstructed, trabeculated urinary bladder. Br J Urol. 1985;57(5):525–9.CrossRefPubMed Gilpin SA, Gosling JA, Barnard RJ. Morphological and morphometric studies of the human obstructed, trabeculated urinary bladder. Br J Urol. 1985;57(5):525–9.CrossRefPubMed
2.
go back to reference Kim KM, Kogan BA, Massad CA, Huang YC. Collagen and elastin in the obstructed fetal bladder. J Urol. 1991;146(2 (Pt 2)):528–31.PubMed Kim KM, Kogan BA, Massad CA, Huang YC. Collagen and elastin in the obstructed fetal bladder. J Urol. 1991;146(2 (Pt 2)):528–31.PubMed
3.
go back to reference Lindner P, Mattiasson A, Persson L, Uvelius B. Reversibility of detrusor hypertrophy and hyperplasia after removal of infravesical outflow obstruction in the rat. J Urol. 1988;140(3):642–6.PubMed Lindner P, Mattiasson A, Persson L, Uvelius B. Reversibility of detrusor hypertrophy and hyperplasia after removal of infravesical outflow obstruction in the rat. J Urol. 1988;140(3):642–6.PubMed
4.
go back to reference Park JM, Borer JG, Freeman MR, Peters CA. Stretch activates heparin-binding EGF-like growth factor expression in bladder smooth muscle cells. Am J Physiol. 1998;275(5 Pt 1):C1247–54.PubMed Park JM, Borer JG, Freeman MR, Peters CA. Stretch activates heparin-binding EGF-like growth factor expression in bladder smooth muscle cells. Am J Physiol. 1998;275(5 Pt 1):C1247–54.PubMed
5.
go back to reference Park JM, Adam RM, Peters CA, Guthrie PD, Sun Z, Klagsbrun M, et al. AP-1 mediates stretch-induced expression of HB-EGF in bladder smooth muscle cells. Am J Physiol. 1999;277(2 Pt 1):C294–301.PubMed Park JM, Adam RM, Peters CA, Guthrie PD, Sun Z, Klagsbrun M, et al. AP-1 mediates stretch-induced expression of HB-EGF in bladder smooth muscle cells. Am J Physiol. 1999;277(2 Pt 1):C294–301.PubMed
6.
go back to reference Hamada K, Takuwa N, Yokoyama K, Takuwa Y. Stretch activates Jun N-terminal kinase/stress-activated protein kinase in vascular smooth muscle cells through mechanisms involving autocrine ATP stimulation of purinoceptors. J Biol Chem. 1998;273(11):6334–40.CrossRefPubMed Hamada K, Takuwa N, Yokoyama K, Takuwa Y. Stretch activates Jun N-terminal kinase/stress-activated protein kinase in vascular smooth muscle cells through mechanisms involving autocrine ATP stimulation of purinoceptors. J Biol Chem. 1998;273(11):6334–40.CrossRefPubMed
7.
go back to reference Komuro I, Kudo S, Yamazaki T, Zou Y, Shiojima I, Yazaki Y. Mechanical stretch activates the stress-activated protein kinases in cardiac myocytes. FASEB J. 1996;10(5):631–6.PubMed Komuro I, Kudo S, Yamazaki T, Zou Y, Shiojima I, Yazaki Y. Mechanical stretch activates the stress-activated protein kinases in cardiac myocytes. FASEB J. 1996;10(5):631–6.PubMed
8.
go back to reference Nguyen HT, Adam RM, Bride SH, Park JM, Peters CA, Freeman MR. Cyclic stretch activates p38 SAPK2-, ErbB2-, and AT1-dependent signaling in bladder smooth muscle cells. Am J Physiol Cell Physiol. 2000;279(4):C1155–67.PubMed Nguyen HT, Adam RM, Bride SH, Park JM, Peters CA, Freeman MR. Cyclic stretch activates p38 SAPK2-, ErbB2-, and AT1-dependent signaling in bladder smooth muscle cells. Am J Physiol Cell Physiol. 2000;279(4):C1155–67.PubMed
9.
go back to reference Kushida N, Kabuyama Y, Yamaguchi O, Homma Y. Essential role for extracellular Ca(2+) in JNK activation by mechanical stretch in bladder smooth muscle cells. Am J Physiol Cell Physiol. 2001;281(4):C1165–72.PubMed Kushida N, Kabuyama Y, Yamaguchi O, Homma Y. Essential role for extracellular Ca(2+) in JNK activation by mechanical stretch in bladder smooth muscle cells. Am J Physiol Cell Physiol. 2001;281(4):C1165–72.PubMed
11.
go back to reference Fukata Y, Amano M, Kaibuchi K. Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci. 2001;22(1):32–9.CrossRefPubMed Fukata Y, Amano M, Kaibuchi K. Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci. 2001;22(1):32–9.CrossRefPubMed
12.
go back to reference Boopathi E, Gomes C, Zderic SA, Malkowicz B, Chakrabarti R, Patel DP, et al. Mechanical stretch upregulates proteins involved in Ca2+ sensitization in urinary bladder smooth muscle hypertrophy. Am J Physiol Cell Physiol. 2014;307(6):C542–53.CrossRefPubMedPubMedCentral Boopathi E, Gomes C, Zderic SA, Malkowicz B, Chakrabarti R, Patel DP, et al. Mechanical stretch upregulates proteins involved in Ca2+ sensitization in urinary bladder smooth muscle hypertrophy. Am J Physiol Cell Physiol. 2014;307(6):C542–53.CrossRefPubMedPubMedCentral
13.
go back to reference Takahashi N, Shiomi H, Kushida N, Liu F, Ishibashi K, Yanagida T, et al. Obstruction alters muscarinic receptor-coupled RhoA/Rho-kinase pathway in the urinary bladder of the rat. Neurourol Urodyn. 2009;28(3):257–62.CrossRefPubMed Takahashi N, Shiomi H, Kushida N, Liu F, Ishibashi K, Yanagida T, et al. Obstruction alters muscarinic receptor-coupled RhoA/Rho-kinase pathway in the urinary bladder of the rat. Neurourol Urodyn. 2009;28(3):257–62.CrossRefPubMed
14.
go back to reference Poley RN, Dosier CR, Speich JE, Miner AS, Ratz PH. Stimulated calcium entry and constitutive RhoA kinase activity cause stretch-induced detrusor contraction. Eur J Pharmacol. 2008;599(1–3):137–45.CrossRefPubMedPubMedCentral Poley RN, Dosier CR, Speich JE, Miner AS, Ratz PH. Stimulated calcium entry and constitutive RhoA kinase activity cause stretch-induced detrusor contraction. Eur J Pharmacol. 2008;599(1–3):137–45.CrossRefPubMedPubMedCentral
15.
go back to reference Pan J, Singh US, Takahashi T, Oka Y, Palm-Leis A, Herbelin BS, et al. PKC mediates cyclic stretch-induced cardiac hypertrophy through Rho family GTPases and mitogen-activated protein kinases in cardiomyocytes. J Cell Physiol. 2005;202(2):536–53.CrossRefPubMed Pan J, Singh US, Takahashi T, Oka Y, Palm-Leis A, Herbelin BS, et al. PKC mediates cyclic stretch-induced cardiac hypertrophy through Rho family GTPases and mitogen-activated protein kinases in cardiomyocytes. J Cell Physiol. 2005;202(2):536–53.CrossRefPubMed
16.
go back to reference Patil SB, Bitar KN. RhoA- and PKC-alpha-mediated phosphorylation of MYPT and its association with HSP27 in colonic smooth muscle cells. Am J Physiol Gastrointest Liver Physiol. 2006;290(1):G83–95.CrossRefPubMed Patil SB, Bitar KN. RhoA- and PKC-alpha-mediated phosphorylation of MYPT and its association with HSP27 in colonic smooth muscle cells. Am J Physiol Gastrointest Liver Physiol. 2006;290(1):G83–95.CrossRefPubMed
17.
go back to reference Sakurada S, Okamoto H, Takuwa N, Sugimoto N, Takuwa Y. Rho activation in excitatory agonist-stimulated vascular smooth muscle. Am J Physiol Cell Physiol. 2001;281(2):C571–8.PubMed Sakurada S, Okamoto H, Takuwa N, Sugimoto N, Takuwa Y. Rho activation in excitatory agonist-stimulated vascular smooth muscle. Am J Physiol Cell Physiol. 2001;281(2):C571–8.PubMed
18.
go back to reference Kaunas R, Nguyen P, Usami S, Chien S. Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc Natl Acad Sci U S A. 2005;102(44):15895–900.CrossRefPubMedPubMedCentral Kaunas R, Nguyen P, Usami S, Chien S. Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc Natl Acad Sci U S A. 2005;102(44):15895–900.CrossRefPubMedPubMedCentral
19.
go back to reference Torsoni AS, Marin TM, Velloso LA, Franchini KG. RhoA/ROCK signaling is critical to FAK activation by cyclic stretch in cardiac myocytes. Am J Physiol Heart Circ Physiol. 2005;289(4):H1488–96.CrossRefPubMed Torsoni AS, Marin TM, Velloso LA, Franchini KG. RhoA/ROCK signaling is critical to FAK activation by cyclic stretch in cardiac myocytes. Am J Physiol Heart Circ Physiol. 2005;289(4):H1488–96.CrossRefPubMed
20.
go back to reference Naruse K, Yamada T, Sai XR, Hamaguchi M, Sokabe M. Pp125FAK is required for stretch dependent morphological response of endothelial cells. Oncogene. 1998;17(4):455–63.CrossRefPubMed Naruse K, Yamada T, Sai XR, Hamaguchi M, Sokabe M. Pp125FAK is required for stretch dependent morphological response of endothelial cells. Oncogene. 1998;17(4):455–63.CrossRefPubMed
21.
go back to reference Marinissen MJ, Chiariello M, Tanos T, Bernard O, Narumiya S, Gutkind JS. The small GTP-binding protein RhoA regulates c-jun by a ROCK-JNK signaling axis. Mol Cell. 2004;14(1):29–41.CrossRefPubMed Marinissen MJ, Chiariello M, Tanos T, Bernard O, Narumiya S, Gutkind JS. The small GTP-binding protein RhoA regulates c-jun by a ROCK-JNK signaling axis. Mol Cell. 2004;14(1):29–41.CrossRefPubMed
22.
go back to reference Ohtsu H, Mifune M, Frank GD, Saito S, Inagami T, Kim-Mitsuyama S, et al. Signal-crosstalk between Rho/ROCK and c-Jun NH2-terminal kinase mediates migration of vascular smooth muscle cells stimulated by angiotensin II. Arterioscler Thromb Vasc Biol. 2005;25(9):1831–6.CrossRefPubMed Ohtsu H, Mifune M, Frank GD, Saito S, Inagami T, Kim-Mitsuyama S, et al. Signal-crosstalk between Rho/ROCK and c-Jun NH2-terminal kinase mediates migration of vascular smooth muscle cells stimulated by angiotensin II. Arterioscler Thromb Vasc Biol. 2005;25(9):1831–6.CrossRefPubMed
23.
go back to reference Zhang L, Deng M, Parthasarathy R, Wang L, Mongan M, Molkentin JD, et al. MEKK1 transduces activin signals in keratinocytes to induce actin stress fiber formation and migration. Mol Cell Biol. 2005;25(1):60–5.CrossRefPubMedPubMedCentral Zhang L, Deng M, Parthasarathy R, Wang L, Mongan M, Molkentin JD, et al. MEKK1 transduces activin signals in keratinocytes to induce actin stress fiber formation and migration. Mol Cell Biol. 2005;25(1):60–5.CrossRefPubMedPubMedCentral
24.
go back to reference Tanemura S, Yamasaki T, Katada T, Nishina H. Limitations of SP600125, an Inhibitor of Stress-Responsive c-Jun N-Terminal Kinase. Curr Enzym Inhib. 2010;6(1):26–33.CrossRef Tanemura S, Yamasaki T, Katada T, Nishina H. Limitations of SP600125, an Inhibitor of Stress-Responsive c-Jun N-Terminal Kinase. Curr Enzym Inhib. 2010;6(1):26–33.CrossRef
25.
go back to reference Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science. 1999;285(5429):895–8.CrossRefPubMed Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science. 1999;285(5429):895–8.CrossRefPubMed
27.
go back to reference Denker SP, Huang DC, Orlowski J, Furthmayr H, Barber DL. Direct binding of the Na--H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation. Mol Cell. 2000;6(6):1425–36.CrossRefPubMed Denker SP, Huang DC, Orlowski J, Furthmayr H, Barber DL. Direct binding of the Na--H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation. Mol Cell. 2000;6(6):1425–36.CrossRefPubMed
28.
go back to reference Watanabe N, Kato T, Fujita A, Ishizaki T, Narumiya S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol. 1999;1(3):136–43.CrossRefPubMed Watanabe N, Kato T, Fujita A, Ishizaki T, Narumiya S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol. 1999;1(3):136–43.CrossRefPubMed
29.
go back to reference Kaunas R, Usami S, Chien S. Regulation of stretch-induced JNK activation by stress fiber orientation. Cell Signal. 2006;18(11):1924–31.CrossRefPubMed Kaunas R, Usami S, Chien S. Regulation of stretch-induced JNK activation by stress fiber orientation. Cell Signal. 2006;18(11):1924–31.CrossRefPubMed
Metadata
Title
Uni-axial stretch induces actin stress fiber reorganization and activates c-Jun NH2 terminal kinase via RhoA and Rho kinase in human bladder smooth muscle cells
Authors
Nobuhiro Kushida
Osamu Yamaguchi
Yohei Kawashima
Hidenori Akaihata
Junya Hata
Kei Ishibashi
Ken Aikawa
Yoshiyuki Kojima
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Urology / Issue 1/2016
Electronic ISSN: 1471-2490
DOI
https://doi.org/10.1186/s12894-016-0127-9

Other articles of this Issue 1/2016

BMC Urology 1/2016 Go to the issue