Skip to main content
Top
Published in: Journal of Neuro-Oncology 3/2011

01-05-2011 | Case Report

Unexpected late radiation neurotoxicity following bevacizumab use: a case series

Authors: Paul J. Kelly, Marc J. Dinkin, Jan Drappatz, Kevin N. O’Regan, Stephanie E. Weiss

Published in: Journal of Neuro-Oncology | Issue 3/2011

Login to get access

Abstract

The purpose of this case series is to report the unexpected occurrence of four cases of late radiation-induced neurotoxicity with bevacizumab use following radiotherapy to the CNS. We retrospectively reviewed the case records of four patients, three with glioblastoma and one with bone metastases secondary to metastatic breast cancer, who were treated with radiotherapy and developed late radiation-induced neurotoxicity following bevacizumab use. Three cases of optic neuropathy in glioblastoma patients and a single case of Brown-Séquard syndrome in the thoracic spine of a patient with metastatic breast cancer are reported. We hypothesize that bevacizumab use following radiotherapy to the CNS may inhibit vascular endothelial growth factor-dependent repair of normal neural tissue, and thus may increase the risk of late radiation neurotoxicity. Phase III data on the safety and efficacy of bevacizumab use with radiation in the setting of glioblastoma is awaited.
Literature
1.
go back to reference Martel MK, Sandler HM, Cornblath WT et al (1997) Dose–volume complication analysis for visual pathway structures of patients with advanced paranasal sinus tumors. Int J Radiat Oncol Biol Phys 38:273–284PubMedCrossRef Martel MK, Sandler HM, Cornblath WT et al (1997) Dose–volume complication analysis for visual pathway structures of patients with advanced paranasal sinus tumors. Int J Radiat Oncol Biol Phys 38:273–284PubMedCrossRef
2.
go back to reference Bhandare N, Monroe AT, Morris CG et al (2005) Does altered fractionation influence the risk of radiation-induced optic neuropathy? Int J Radiat Oncol Biol Phys 62:1070–1077PubMedCrossRef Bhandare N, Monroe AT, Morris CG et al (2005) Does altered fractionation influence the risk of radiation-induced optic neuropathy? Int J Radiat Oncol Biol Phys 62:1070–1077PubMedCrossRef
3.
go back to reference Parsons JT, Bova FJ, Fitzgerald CR et al (1994) Radiation optic neuropathy after megavoltage external-beam irradiation: analysis of time–dose factors. Int J Radiat Oncol Biol Phys 30:755–763PubMed Parsons JT, Bova FJ, Fitzgerald CR et al (1994) Radiation optic neuropathy after megavoltage external-beam irradiation: analysis of time–dose factors. Int J Radiat Oncol Biol Phys 30:755–763PubMed
4.
go back to reference Mayo C, Martel MK, Marks LB et al (2010) Radiation dose–volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys 76(Suppl):S28–S35PubMed Mayo C, Martel MK, Marks LB et al (2010) Radiation dose–volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys 76(Suppl):S28–S35PubMed
5.
go back to reference Rades D, Fehlauer F, Stalpers LJ et al (2004) A prospective evaluation of two radiotherapy schedules with 10 versus 20 fractions for the treatment of metastatic spinal cord compression: final results of a multicenter study. Cancer 101:2687–2692PubMedCrossRef Rades D, Fehlauer F, Stalpers LJ et al (2004) A prospective evaluation of two radiotherapy schedules with 10 versus 20 fractions for the treatment of metastatic spinal cord compression: final results of a multicenter study. Cancer 101:2687–2692PubMedCrossRef
6.
go back to reference Kirkpatrick JP, van der Kogel AJ, Schultheiss TE (2010) Radiation dose–volume effects in the spinal cord. Int J Radiat Oncol Biol Phys 76(Suppl):S42–S49PubMed Kirkpatrick JP, van der Kogel AJ, Schultheiss TE (2010) Radiation dose–volume effects in the spinal cord. Int J Radiat Oncol Biol Phys 76(Suppl):S42–S49PubMed
7.
go back to reference Kim KJ, Li B, Winer J et al (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844PubMedCrossRef Kim KJ, Li B, Winer J et al (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844PubMedCrossRef
8.
go back to reference Lee CG, Heijn M, di Tomaso E et al (2000) Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60:5565–5570PubMed Lee CG, Heijn M, di Tomaso E et al (2000) Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60:5565–5570PubMed
9.
go back to reference Hess C, Vuong V, Hegyi I et al (2001) Effect of VEGF receptor inhibitor PTK787/ZK222584 combined with ionizing radiation on endothelial cells and tumour growth. Br J Cancer 85:2010–2016PubMedCrossRef Hess C, Vuong V, Hegyi I et al (2001) Effect of VEGF receptor inhibitor PTK787/ZK222584 combined with ionizing radiation on endothelial cells and tumour growth. Br J Cancer 85:2010–2016PubMedCrossRef
10.
go back to reference Li J, Huang S, Armstrong EA et al (2005) Angiogenesis and radiation response modulation after vascular endothelial growth factor receptor-2 (VEGFR2) blockade. Int J Radiat Oncol Biol Phys 62:1477–1485PubMedCrossRef Li J, Huang S, Armstrong EA et al (2005) Angiogenesis and radiation response modulation after vascular endothelial growth factor receptor-2 (VEGFR2) blockade. Int J Radiat Oncol Biol Phys 62:1477–1485PubMedCrossRef
11.
go back to reference Narazaki M, Tosato G (2006) Ligand-induced internalization selects use of common receptor neuropilin-1 by VEGF165 and semaphorin3A. Blood 107:3892–3901PubMedCrossRef Narazaki M, Tosato G (2006) Ligand-induced internalization selects use of common receptor neuropilin-1 by VEGF165 and semaphorin3A. Blood 107:3892–3901PubMedCrossRef
12.
go back to reference Zachary I (2005) Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neurosignals 14:207–221PubMedCrossRef Zachary I (2005) Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neurosignals 14:207–221PubMedCrossRef
13.
go back to reference Sherman JH, Aregawi DG, Lai HM et al (2009) Optic neuropathy in patients with glioblastoma receiving bevacizumab. Neurology 73:1924–1926PubMedCrossRef Sherman JH, Aregawi DG, Lai HM et al (2009) Optic neuropathy in patients with glioblastoma receiving bevacizumab. Neurology 73:1924–1926PubMedCrossRef
14.
go back to reference Levin VA, Bidaut L, Hou P et al. (2010) Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys doi:10.1016/j.ijrobp.2009.12.061 Levin VA, Bidaut L, Hou P et al. (2010) Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys doi:10.​1016/​j.​ijrobp.​2009.​12.​061
15.
go back to reference Lai A, Filka E, McGibbon B et al (2008) Phase II pilot study of bevacizumab in combination with temozolomide and regional radiation therapy for up-front treatment of patients with newly diagnosed glioblastoma multiforme: interim analysis of safety and tolerability. Int J Radiat Oncol Biol Phys 71:1372–1380PubMedCrossRef Lai A, Filka E, McGibbon B et al (2008) Phase II pilot study of bevacizumab in combination with temozolomide and regional radiation therapy for up-front treatment of patients with newly diagnosed glioblastoma multiforme: interim analysis of safety and tolerability. Int J Radiat Oncol Biol Phys 71:1372–1380PubMedCrossRef
16.
go back to reference Lai A, Nghiemphu P, Green R et al. (2009) Phase II trial of bevacizumab in combination with temozolomide and regional radiation therapy for up-front treatment of patients with newly diagnosed glioblastoma multiforme [Abstract]. J Clin Oncol 27(Suppl): S15 Lai A, Nghiemphu P, Green R et al. (2009) Phase II trial of bevacizumab in combination with temozolomide and regional radiation therapy for up-front treatment of patients with newly diagnosed glioblastoma multiforme [Abstract]. J Clin Oncol 27(Suppl): S15
17.
go back to reference Narayana A, Golfinos JG, Fischer I et al (2008) Feasibility of using bevacizumab with radiation therapy and temozolomide in newly diagnosed high-grade glioma. Int J Radiat Oncol Biol Phys 72:383–389PubMedCrossRef Narayana A, Golfinos JG, Fischer I et al (2008) Feasibility of using bevacizumab with radiation therapy and temozolomide in newly diagnosed high-grade glioma. Int J Radiat Oncol Biol Phys 72:383–389PubMedCrossRef
18.
go back to reference Gutin PH, Iwamoto FM, Beal K et al (2009) Safety and efficacy of bevacizumab with hypofractionated stereotactic irradiation for recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 75:156–163PubMedCrossRef Gutin PH, Iwamoto FM, Beal K et al (2009) Safety and efficacy of bevacizumab with hypofractionated stereotactic irradiation for recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 75:156–163PubMedCrossRef
Metadata
Title
Unexpected late radiation neurotoxicity following bevacizumab use: a case series
Authors
Paul J. Kelly
Marc J. Dinkin
Jan Drappatz
Kevin N. O’Regan
Stephanie E. Weiss
Publication date
01-05-2011
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 3/2011
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-010-0336-0

Other articles of this Issue 3/2011

Journal of Neuro-Oncology 3/2011 Go to the issue