Skip to main content
Top
Published in: BMC Cancer 1/2021

Open Access 01-12-2021 | Research article

Understanding the influence of substrate when growing tumorspheres

Authors: Lucía Benítez, Lucas Barberis, Luciano Vellón, Carlos A. Condat

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

Cancer stem cells are important for the development of many solid tumors. These cells receive promoting and inhibitory signals that depend on the nature of their environment (their niche) and determine cell dynamics. Mechanical stresses are crucial to the initiation and interpretation of these signals.

Methods

A two-population mathematical model of tumorsphere growth is used to interpret the results of a series of experiments recently carried out in Tianjin, China, and extract information about the intraspecific and interspecific interactions between cancer stem cell and differentiated cancer cell populations.

Results

The model allows us to reconstruct the time evolution of the cancer stem cell fraction, which was not directly measured. We find that, in the presence of stem cell growth factors, the interspecific cooperation between cancer stem cells and differentiated cancer cells induces a positive feedback loop that determines growth, independently of substrate hardness. In a frustrated attempt to reconstitute the stem cell niche, the number of cancer stem cells increases continuously with a reproduction rate that is enhanced by a hard substrate. For growth on soft agar, intraspecific interactions are always inhibitory, but on hard agar the interactions between stem cells are collaborative while those between differentiated cells are strongly inhibitory. Evidence also suggests that a hard substrate brings about a large fraction of asymmetric stem cell divisions. In the absence of stem cell growth factors, the barrier to differentiation is broken and overall growth is faster, even if the stem cell number is conserved.

Conclusions

Our interpretation of the experimental results validates the centrality of the concept of stem cell niche when tumor growth is fueled by cancer stem cells. Niche memory is found to be responsible for the characteristic population dynamics observed in tumorspheres. The model also shows why substratum stiffness has a deep influence on the behavior of cancer stem cells, stiffer substrates leading to a larger proportion of asymmetric doublings. A specific condition for the growth of the cancer stem cell number is also obtained
Appendix
Available only for authorised users
Literature
1.
go back to reference Lapidot T, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994; 367:645.PubMedCrossRef Lapidot T, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994; 367:645.PubMedCrossRef
2.
3.
go back to reference Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004; 432(7015):396–401.PubMedCrossRef Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004; 432(7015):396–401.PubMedCrossRef
4.
go back to reference Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007; 67(3):1030–7.PubMedCrossRef Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007; 67(3):1030–7.PubMedCrossRef
5.
go back to reference O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007; 445(7123):106–10.PubMedCrossRef O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007; 445(7123):106–10.PubMedCrossRef
6.
go back to reference Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008; 15(3):504–14.PubMedCrossRef Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008; 15(3):504–14.PubMedCrossRef
8.
go back to reference Jagust P, de Luxán-delgado B, Parejo-Alonso B, Sancho P. Metabolism-Based Therapeutic Strategies Targeting Cancer Stem Cells. Front Pharmacol. 2019; 10:203.PubMedPubMedCentralCrossRef Jagust P, de Luxán-delgado B, Parejo-Alonso B, Sancho P. Metabolism-Based Therapeutic Strategies Targeting Cancer Stem Cells. Front Pharmacol. 2019; 10:203.PubMedPubMedCentralCrossRef
9.
go back to reference Chen YC, Ingram PN, Fouladdel S, Mcdermott SP, Azizi E, Wicha MS, et al. High-throughput single-cell derived sphere formation for cancer stem-like cell identification and analysis. Sci Rep. 2016; 6:27301.PubMedPubMedCentralCrossRef Chen YC, Ingram PN, Fouladdel S, Mcdermott SP, Azizi E, Wicha MS, et al. High-throughput single-cell derived sphere formation for cancer stem-like cell identification and analysis. Sci Rep. 2016; 6:27301.PubMedPubMedCentralCrossRef
10.
go back to reference Visvader JE, Lindeman GJ. Cancer stem cells: Current status and evolving complexities. Cell Stem Cell. 2012; 10(6):717–28.PubMedCrossRef Visvader JE, Lindeman GJ. Cancer stem cells: Current status and evolving complexities. Cell Stem Cell. 2012; 10(6):717–28.PubMedCrossRef
11.
go back to reference Taniguchi S, Elhance A, Van Duzer A, Kumar S, Leitenberger JJ, Oshimori N. Tumor-initiating cells establish an IL-33–TGF- β niche signaling loop to promote cancer progression. Science. 2020; 369(eaay1813):1–12. Taniguchi S, Elhance A, Van Duzer A, Kumar S, Leitenberger JJ, Oshimori N. Tumor-initiating cells establish an IL-33–TGF- β niche signaling loop to promote cancer progression. Science. 2020; 369(eaay1813):1–12.
12.
go back to reference Stiehl T, Marciniak-Czochra A. Mathematical modeling of leukemogenesis and cancer stem cell dynamics. Math Model Nat Phenom. 2012; 7(1):166–202.CrossRef Stiehl T, Marciniak-Czochra A. Mathematical modeling of leukemogenesis and cancer stem cell dynamics. Math Model Nat Phenom. 2012; 7(1):166–202.CrossRef
13.
go back to reference Stiehl T, Baran N, Ho AD, Marciniak-Czochra A. Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: A model predict patient survival. Cancer Res. 2015; 75(6):940–9.PubMedCrossRef Stiehl T, Baran N, Ho AD, Marciniak-Czochra A. Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: A model predict patient survival. Cancer Res. 2015; 75(6):940–9.PubMedCrossRef
15.
go back to reference Bessonov N, Pinna G, Minarsky A, Harel-Bellan A, Morozova N. Mathematical modeling reveals the factors involved in the phenomena of cancer stem cells stabilization. PLoS ONE. 2019; 14(11):e0224787.PubMedPubMedCentralCrossRef Bessonov N, Pinna G, Minarsky A, Harel-Bellan A, Morozova N. Mathematical modeling reveals the factors involved in the phenomena of cancer stem cells stabilization. PLoS ONE. 2019; 14(11):e0224787.PubMedPubMedCentralCrossRef
16.
go back to reference Park JS, Kim HN, Kim DH, Levchenko A, Suh KY. Quantitative analysis of the combined effect of substrate rigidity and topographic guidance on cell morphology. IEEE Trans Nanobiosci. 2012; 11(1):28–36.CrossRef Park JS, Kim HN, Kim DH, Levchenko A, Suh KY. Quantitative analysis of the combined effect of substrate rigidity and topographic guidance on cell morphology. IEEE Trans Nanobiosci. 2012; 11(1):28–36.CrossRef
18.
go back to reference Benítez L, Barberis L, Condat CA. Modeling tumorspheres reveals cancer stem cell niche building and plasticity. Physica A. 2019; 533:121906.CrossRef Benítez L, Barberis L, Condat CA. Modeling tumorspheres reveals cancer stem cell niche building and plasticity. Physica A. 2019; 533:121906.CrossRef
19.
go back to reference Taloni A, Ben Amar M, Zapperi S, La Porta CAM. The role of pressure in cancer growth. Eur Phys J Plus. 2015; 130:224.CrossRef Taloni A, Ben Amar M, Zapperi S, La Porta CAM. The role of pressure in cancer growth. Eur Phys J Plus. 2015; 130:224.CrossRef
20.
21.
go back to reference La Porta CAM, Zapperi S, Sethna JP. Senescent Cells in Growing Tumors: Population Dynamics and Cancer Stem Cells. PLoS Comput Biol. 2012; 8(1):e1002316.PubMedPubMedCentralCrossRef La Porta CAM, Zapperi S, Sethna JP. Senescent Cells in Growing Tumors: Population Dynamics and Cancer Stem Cells. PLoS Comput Biol. 2012; 8(1):e1002316.PubMedPubMedCentralCrossRef
22.
go back to reference Agur Z, Kogan Y, Levi L, Harrison H, Lamb R, Kirnasovsky OU, et al. Disruption of a Quorum Sensing mechanism triggers tumorigenesis: A simple discrete model corroborated by experiments in mammary cancer stem cells. Biol Direct. 2010; 5(1):20.PubMedPubMedCentralCrossRef Agur Z, Kogan Y, Levi L, Harrison H, Lamb R, Kirnasovsky OU, et al. Disruption of a Quorum Sensing mechanism triggers tumorigenesis: A simple discrete model corroborated by experiments in mammary cancer stem cells. Biol Direct. 2010; 5(1):20.PubMedPubMedCentralCrossRef
23.
go back to reference Helmlinger G, Netti PA, Lichtenbeld HC, Melder RJ, Jain RK. Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotechnol. 1997; 15(8):778–83.PubMedCrossRef Helmlinger G, Netti PA, Lichtenbeld HC, Melder RJ, Jain RK. Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotechnol. 1997; 15(8):778–83.PubMedCrossRef
24.
go back to reference Delsanto PP, Guiot C, Degiorgis PG, Condat CA, Mansury Y, Deisboeck TS. Growth model for multicellular tumor spheroids. Appl Phys Lett. 2004; 85(18):4225–7.CrossRef Delsanto PP, Guiot C, Degiorgis PG, Condat CA, Mansury Y, Deisboeck TS. Growth model for multicellular tumor spheroids. Appl Phys Lett. 2004; 85(18):4225–7.CrossRef
25.
go back to reference Koike C, McKee TD, Pluen A, Ramanujan S, Burton K, Munn LL, et al. Solid stress facilitates spheroid formation: Potential involvement of hyaluronan. Br J Cancer. 2002; 86(6):947–53.PubMedPubMedCentralCrossRef Koike C, McKee TD, Pluen A, Ramanujan S, Burton K, Munn LL, et al. Solid stress facilitates spheroid formation: Potential involvement of hyaluronan. Br J Cancer. 2002; 86(6):947–53.PubMedPubMedCentralCrossRef
26.
go back to reference Cheng G, Tse J, Jain RK, Munn LL. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS ONE. 2009; 4(2):e4632.PubMedPubMedCentralCrossRef Cheng G, Tse J, Jain RK, Munn LL. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS ONE. 2009; 4(2):e4632.PubMedPubMedCentralCrossRef
27.
go back to reference Montel F, Delarue M, Elgeti J, Vignjevic D, Cappello G, Prost J. Isotropic stress reduces cell proliferation in tumor spheroids. New J Phys. 2012; 14:055008.CrossRef Montel F, Delarue M, Elgeti J, Vignjevic D, Cappello G, Prost J. Isotropic stress reduces cell proliferation in tumor spheroids. New J Phys. 2012; 14:055008.CrossRef
28.
go back to reference Delarue M, Montel F, Vignjevic D, Prost J, Joanny JF, Cappello G. Compressive stress inhibits proliferation in tumor spheroids through a volume limitation. Biophys J. 2014; 107(8):1821–8.PubMedPubMedCentralCrossRef Delarue M, Montel F, Vignjevic D, Prost J, Joanny JF, Cappello G. Compressive stress inhibits proliferation in tumor spheroids through a volume limitation. Biophys J. 2014; 107(8):1821–8.PubMedPubMedCentralCrossRef
29.
go back to reference Desmaison A, Guill L, Triclin S, Wei P, Ducommun B, Lobjois V. Impact of physical confinement on nuclei geometry and cell division dynamics in 3D spheroids. Sci Rep. 2018; 8:8785.PubMedPubMedCentralCrossRef Desmaison A, Guill L, Triclin S, Wei P, Ducommun B, Lobjois V. Impact of physical confinement on nuclei geometry and cell division dynamics in 3D spheroids. Sci Rep. 2018; 8:8785.PubMedPubMedCentralCrossRef
30.
go back to reference Desmaison A, Frongia C, Grenier K. Ducommun B„ Lobjois V. Mechanical stress impairs mitosis progression in multi-cellular tumor spheroids. PLoS One. 2013; e80447:8. Desmaison A, Frongia C, Grenier K. Ducommun B„ Lobjois V. Mechanical stress impairs mitosis progression in multi-cellular tumor spheroids. PLoS One. 2013; e80447:8.
31.
go back to reference Mills KL, Kemkemer R, Rudraraju S, Garikipati K. Elastic Free Energy Drives the Shape of Prevascular Solid Tumors. PLoS ONE. 2014; 9(7):3–9.CrossRef Mills KL, Kemkemer R, Rudraraju S, Garikipati K. Elastic Free Energy Drives the Shape of Prevascular Solid Tumors. PLoS ONE. 2014; 9(7):3–9.CrossRef
32.
33.
go back to reference Chen A, Wang L, Liu S, Wang Y, Liu Y, Wang M. Attraction and Compaction of Migratory Breast Cancer Cells by Bone Matrix Proteins through Tumor-Osteocyte Interactions. Sci Rep. 2018; 8:5420.PubMedPubMedCentralCrossRef Chen A, Wang L, Liu S, Wang Y, Liu Y, Wang M. Attraction and Compaction of Migratory Breast Cancer Cells by Bone Matrix Proteins through Tumor-Osteocyte Interactions. Sci Rep. 2018; 8:5420.PubMedPubMedCentralCrossRef
34.
go back to reference Sun M, Chi G, Xu J, Tan Y, Xu J, Lv S, et al. Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin α5. Stem Cell Res Ther. 2018; 9(1):1–13.CrossRef Sun M, Chi G, Xu J, Tan Y, Xu J, Lv S, et al. Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin α5. Stem Cell Res Ther. 2018; 9(1):1–13.CrossRef
35.
go back to reference Nakano T, Okaie Y, Kinugasa Y, Koujin T, Suda T, Hiraoka Y, et al. Roles of Remote and Contact Forces in Epithelial Cell Structure Formation. Biophys J. 2020; 118(6):1466–78.PubMedPubMedCentralCrossRef Nakano T, Okaie Y, Kinugasa Y, Koujin T, Suda T, Hiraoka Y, et al. Roles of Remote and Contact Forces in Epithelial Cell Structure Formation. Biophys J. 2020; 118(6):1466–78.PubMedPubMedCentralCrossRef
36.
go back to reference Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005; 310(5751):1139–43.PubMedCrossRef Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005; 310(5751):1139–43.PubMedCrossRef
37.
go back to reference Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell. 2006; 126(4):677–89.CrossRefPubMed Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell. 2006; 126(4):677–89.CrossRefPubMed
38.
go back to reference Choi HY, Yang GM, Dayem AA, Saha SK, Kim K, Yoo Y, et al. Hydrodynamic shear stress promotes epithelial-mesenchymal transition by downregulating ERK and GSK3 β activities. Breast Cancer Res. 2019; 21:6.PubMedPubMedCentralCrossRef Choi HY, Yang GM, Dayem AA, Saha SK, Kim K, Yoo Y, et al. Hydrodynamic shear stress promotes epithelial-mesenchymal transition by downregulating ERK and GSK3 β activities. Breast Cancer Res. 2019; 21:6.PubMedPubMedCentralCrossRef
39.
go back to reference Smith Q, Chan XY, Carmo AM, Trempel M, Saunders M, Gerecht S. Compliant substratum guides endothelial commitment from human pluripotent stem cells. Sci Adv. 2017; 3(e1602883):1–9. Smith Q, Chan XY, Carmo AM, Trempel M, Saunders M, Gerecht S. Compliant substratum guides endothelial commitment from human pluripotent stem cells. Sci Adv. 2017; 3(e1602883):1–9.
40.
go back to reference Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia (New York, NY). 2015; 17(1):1–15.CrossRef Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia (New York, NY). 2015; 17(1):1–15.CrossRef
41.
go back to reference Wang J, Liu X, Jiang Z, Li L, Cui Z, Gao Y, et al. A novel method to limit breast cancer stem cells in states of quiescence, proliferation or differentiation: Use of gel stress in combination with stem cell growth factors. Oncol Lett. 2016; 12(2):1355–60.PubMedPubMedCentralCrossRef Wang J, Liu X, Jiang Z, Li L, Cui Z, Gao Y, et al. A novel method to limit breast cancer stem cells in states of quiescence, proliferation or differentiation: Use of gel stress in combination with stem cell growth factors. Oncol Lett. 2016; 12(2):1355–60.PubMedPubMedCentralCrossRef
42.
43.
go back to reference Rodriguez-Brenes IA, Komarova NL, Wodarz D. Evolutionary dynamics of feedback escape and the development of stem-cell-driven cancers. Proc Natl Acad Sci. 2011; 108(47):18983–8.PubMedCrossRefPubMedCentral Rodriguez-Brenes IA, Komarova NL, Wodarz D. Evolutionary dynamics of feedback escape and the development of stem-cell-driven cancers. Proc Natl Acad Sci. 2011; 108(47):18983–8.PubMedCrossRefPubMedCentral
45.
go back to reference Vellon L, Menendez JA, Lupu R. αvβ3 integrin regulates heregulin (HRG)-induced cell proliferation and survival in breast cancer. Oncogene. 2005; 24(23):3759–73.PubMedCrossRef Vellon L, Menendez JA, Lupu R. αvβ3 integrin regulates heregulin (HRG)-induced cell proliferation and survival in breast cancer. Oncogene. 2005; 24(23):3759–73.PubMedCrossRef
46.
go back to reference Vellon L, Menendez JA, Lupu R. A bidirectional “ αvβ3 integrin-ERK1/ERK2 MAPK” connection regulates the proliferation of breast cancer cells. Mol Carcinog. 2006; 45(10):795–804.PubMedCrossRef Vellon L, Menendez JA, Lupu R. A bidirectional “ αvβ3 integrin-ERK1/ERK2 MAPK” connection regulates the proliferation of breast cancer cells. Mol Carcinog. 2006; 45(10):795–804.PubMedCrossRef
47.
go back to reference Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, et al. Glioma Stem Cell Lines Expanded in Adherent Culture Have Tumor-Specific Phenotypes and Are Suitable for Chemical and Genetic Screens. Cell Stem Cell. 2009; 4(6):568–80.PubMedCrossRef Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, et al. Glioma Stem Cell Lines Expanded in Adherent Culture Have Tumor-Specific Phenotypes and Are Suitable for Chemical and Genetic Screens. Cell Stem Cell. 2009; 4(6):568–80.PubMedCrossRef
48.
go back to reference Videla Richardson GA, Garcia CP, Roisman A, Slavutsky I, Fernandez Espinosa DD, Romorini L, et al. Specific Preferences in Lineage Choice and Phenotypic Plasticity of Glioma Stem Cells under BMP4 and Noggin Influence. Brain Pathol. 2016; 26(1):43–61.PubMedCrossRef Videla Richardson GA, Garcia CP, Roisman A, Slavutsky I, Fernandez Espinosa DD, Romorini L, et al. Specific Preferences in Lineage Choice and Phenotypic Plasticity of Glioma Stem Cells under BMP4 and Noggin Influence. Brain Pathol. 2016; 26(1):43–61.PubMedCrossRef
49.
go back to reference Kim SY, Hong SH, Basse PH, Wu C, Bartlett DL, Kwon YT, et al. Cancer Stem Cells Protect Non-Stem Cells From Anoikis: Bystander Effects. J Cell Biochem. 2016; 107:2289–301.CrossRef Kim SY, Hong SH, Basse PH, Wu C, Bartlett DL, Kwon YT, et al. Cancer Stem Cells Protect Non-Stem Cells From Anoikis: Bystander Effects. J Cell Biochem. 2016; 107:2289–301.CrossRef
Metadata
Title
Understanding the influence of substrate when growing tumorspheres
Authors
Lucía Benítez
Lucas Barberis
Luciano Vellón
Carlos A. Condat
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-07918-1

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine