Skip to main content
Top
Published in: Experimental Hematology & Oncology 1/2018

Open Access 01-12-2018 | Research

Understanding metabolic changes in aging bone marrow

Authors: Kwasi M. Connor, Young Hsu, Pardeep Kumar Aggarwal, Stephen Capone, Anthony R. Colombo, Giridharan Ramsingh

Published in: Experimental Hematology & Oncology | Issue 1/2018

Login to get access

Abstract

Background

Aging is associated with complex molecular alterations at the cellular level. Bone marrow exhibits distinct phenotypic, genetic and epigenetic alterations with aging. Metabolic changes in the bone marrow related to aging have not been studied.

Methods

In this study, we characterized the metabolome and transcriptome of aging murine bone marrow and compared it with bone marrow from young healthy mice and chemotherapy treated mice; chemotherapy treatment is known to induce age-related changes in hematopoiesis.

Results

The metabolome of the aging bone marrow exhibited a signature of suppressed fatty-acid oxidation: accumulation of free fatty acids, reduced acyl-carnitines and low β-hydroxy butyric acid. The aged bone marrow also exhibited a significant reduction in amino acid and nucleic acid pool. The transcriptome of the aging bone marrow revealed a signature of oxidative stress, known to be associated with mitochondrial dysfunction. Lastly, the metabolic and transcriptomic profiles of the bone marrow of chemotherapy treated mice did not show broad age-related changes but rather mostly resembled young healthy mice, suggestive of a lack of ‘metabolic aging’ with chemotherapy exposure.

Conclusion

Our results revealed broad changes in lipids, amino acids, and nucleotides in aging marrow tissue. Together, these data provide a rich resource for the study of metabolic changes associated with aging in bone marrow.
Appendix
Available only for authorised users
Literature
8.
go back to reference Meng A, Wang Y, Van Zant G, Zhou D. Ionizing radiation and busulfan induce premature senescence in murine bone marrow hematopoietic cells. Cancer Res. 2003;63(17):5414–9.PubMed Meng A, Wang Y, Van Zant G, Zhou D. Ionizing radiation and busulfan induce premature senescence in murine bone marrow hematopoietic cells. Cancer Res. 2003;63(17):5414–9.PubMed
10.
go back to reference Currais A, Goldberg J, Farrokhi C, et al. A comprehensive multiomics approach toward understanding the relationship between aging and dementia. Aging (Albany NY). 2015;7(11):937–55.CrossRef Currais A, Goldberg J, Farrokhi C, et al. A comprehensive multiomics approach toward understanding the relationship between aging and dementia. Aging (Albany NY). 2015;7(11):937–55.CrossRef
14.
go back to reference Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004;134(3):489–92.CrossRefPubMed Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004;134(3):489–92.CrossRefPubMed
22.
go back to reference Kauppila TES, Kauppila JHK, Larsson NG. Mammalian mitochondria and aging: an update. Cell Metab. 2017;25(1):57–71.CrossRefPubMed Kauppila TES, Kauppila JHK, Larsson NG. Mammalian mitochondria and aging: an update. Cell Metab. 2017;25(1):57–71.CrossRefPubMed
25.
go back to reference Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003;33(6):919–26.CrossRefPubMed Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003;33(6):919–26.CrossRefPubMed
28.
go back to reference Muschler GF, Nitto H, Boehm CA, Easley KA. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res. 2001;19(1):117–25.CrossRefPubMed Muschler GF, Nitto H, Boehm CA, Easley KA. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res. 2001;19(1):117–25.CrossRefPubMed
30.
go back to reference Soga T, Baran R, Suematsu M, et al. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem. 2006;281(24):16768–76.CrossRefPubMed Soga T, Baran R, Suematsu M, et al. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem. 2006;281(24):16768–76.CrossRefPubMed
33.
go back to reference Banay-Schwartz M, Lajtha A, Palkovits M. Changes with aging in the levels of amino acids in rat CNS structural elements. I. Glutamate and related amino acids. Neurochem Res. 1989;14(6):555–62.CrossRefPubMed Banay-Schwartz M, Lajtha A, Palkovits M. Changes with aging in the levels of amino acids in rat CNS structural elements. I. Glutamate and related amino acids. Neurochem Res. 1989;14(6):555–62.CrossRefPubMed
34.
go back to reference Moretto J, Guglielmetti AS, Tournier-Nappey M, et al. Effects of a chronic l-arginine supplementation on the arginase pathway in aged rats. Exp Gerontol. 2017;90:52–60.CrossRefPubMed Moretto J, Guglielmetti AS, Tournier-Nappey M, et al. Effects of a chronic l-arginine supplementation on the arginase pathway in aged rats. Exp Gerontol. 2017;90:52–60.CrossRefPubMed
39.
go back to reference Wang Y, Probin V, Zhou D. Cancer therapy-induced residual bone marrow injury-Mechanisms of induction and implication for therapy. Curr Cancer Ther Rev. 2006;2(3):271–9.CrossRefPubMedPubMedCentral Wang Y, Probin V, Zhou D. Cancer therapy-induced residual bone marrow injury-Mechanisms of induction and implication for therapy. Curr Cancer Ther Rev. 2006;2(3):271–9.CrossRefPubMedPubMedCentral
Metadata
Title
Understanding metabolic changes in aging bone marrow
Authors
Kwasi M. Connor
Young Hsu
Pardeep Kumar Aggarwal
Stephen Capone
Anthony R. Colombo
Giridharan Ramsingh
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Experimental Hematology & Oncology / Issue 1/2018
Electronic ISSN: 2162-3619
DOI
https://doi.org/10.1186/s40164-018-0105-x

Other articles of this Issue 1/2018

Experimental Hematology & Oncology 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine