Skip to main content
Top
Published in: Radiological Physics and Technology 3/2018

01-09-2018

Undersampling patterns in k-space for compressed sensing MRI using two-dimensional Cartesian sampling

Authors: Shinya Kojima, Hiroyuki Shinohara, Takeyuki Hashimoto, Shigeru Suzuki

Published in: Radiological Physics and Technology | Issue 3/2018

Login to get access

Abstract

In compressed sensing magnetic resonance imaging (CS-MRI), undersampling of k-space is performed to achieve faster imaging. For this process, it is important to acquire data randomly, and an optimal random undersampling pattern is required. However, random undersampling is difficult in two-dimensional (2D) Cartesian sampling. In this study, the effect of random undersampling patterns on image reconstruction was clarified using phantom and in vivo MRI, and a sampling pattern relevant for 2D Cartesian sampling in CS-MRI is suggested. The precision of image restoration was estimated with various acceleration factors and extents for the fully sampled central region of k-space. The root-mean-square error, structural similarity index, and modulation transfer function were measured, and visual assessments were also performed. The undersampling pattern was shown to influence the precision of image restoration, and an optimal undersampling pattern should be used to improve image quality; therefore, we suggest that the ideal undersampling pattern in CS-MRI for 2D Cartesian sampling is one with a high extent for the fully sampled central region of k-space.
Literature
1.
go back to reference Mann LW, Higgins DM, Peters CN, Cassidy S, Hodson KK, Coombs A, Taylor R, Hollingsworth KG. Accelerating MR imaging liver steatosis measurement using combined compressed sensing and parallel imaging: a quantitative evaluation. Radiology. 2016;278(1):247–56.CrossRefPubMed Mann LW, Higgins DM, Peters CN, Cassidy S, Hodson KK, Coombs A, Taylor R, Hollingsworth KG. Accelerating MR imaging liver steatosis measurement using combined compressed sensing and parallel imaging: a quantitative evaluation. Radiology. 2016;278(1):247–56.CrossRefPubMed
2.
go back to reference Li B, Li H, Kong H, Dong L, Zhang J, Fang J. Compressed sensing based simultaneous black- and gray-blood carotid vessel wall MR imaging. Magn Reson Imaging. 2017;38:214–23.CrossRefPubMed Li B, Li H, Kong H, Dong L, Zhang J, Fang J. Compressed sensing based simultaneous black- and gray-blood carotid vessel wall MR imaging. Magn Reson Imaging. 2017;38:214–23.CrossRefPubMed
3.
go back to reference Kido T, Kido T, Nakamura M, Watanabe K, Schmidt M, Forman C, Mochizuki T. Compressed sensing real-time cine cardiovascular magnetic resonance: accurate assessment of left ventricular function in a single-breath-hold. J Cardiovasc Magn Reson. 2016;18(1):50.CrossRefPubMedPubMedCentral Kido T, Kido T, Nakamura M, Watanabe K, Schmidt M, Forman C, Mochizuki T. Compressed sensing real-time cine cardiovascular magnetic resonance: accurate assessment of left ventricular function in a single-breath-hold. J Cardiovasc Magn Reson. 2016;18(1):50.CrossRefPubMedPubMedCentral
4.
go back to reference Han S, Cho H. Temporal resolution improvement of calibration-free dynamic contrast-enhanced MRI with compressed sensing optimized turbo spin echo: the effects of replacing turbo factor with compressed sensing accelerations. J Magn Reson Imaging. 2016;44(1):138–47.CrossRefPubMed Han S, Cho H. Temporal resolution improvement of calibration-free dynamic contrast-enhanced MRI with compressed sensing optimized turbo spin echo: the effects of replacing turbo factor with compressed sensing accelerations. J Magn Reson Imaging. 2016;44(1):138–47.CrossRefPubMed
5.
go back to reference Kim SG, Feng L, Grimm R, Freed M, Block KT, Sodickson DK, Moy L, Otazo R. Influence of temporal regularization and radial undersampling factor on compressed sensing reconstruction in dynamic contrast enhanced MRI of the breast. J Magn Reson Imaging. 2016;43(1):261–9.CrossRefPubMed Kim SG, Feng L, Grimm R, Freed M, Block KT, Sodickson DK, Moy L, Otazo R. Influence of temporal regularization and radial undersampling factor on compressed sensing reconstruction in dynamic contrast enhanced MRI of the breast. J Magn Reson Imaging. 2016;43(1):261–9.CrossRefPubMed
6.
go back to reference Nam S, Hong SN, Akçakaya M, Kwak Y, Goddu B, Kissinger KV, Manning WJ, Tarokh V, Nezafat R. Compressed sensing reconstruction for undersampled breath-hold radial cine imaging with auxiliary free-breathing data. J Magn Reson Imaging. 2014;39(1):179–88.CrossRefPubMed Nam S, Hong SN, Akçakaya M, Kwak Y, Goddu B, Kissinger KV, Manning WJ, Tarokh V, Nezafat R. Compressed sensing reconstruction for undersampled breath-hold radial cine imaging with auxiliary free-breathing data. J Magn Reson Imaging. 2014;39(1):179–88.CrossRefPubMed
7.
go back to reference Rapacchi S, Han F, Natsuaki Y, Kroeker R, Plotnik A, Lehrman E, Sayre J, Laub G, Finn JP, Hu P. High spatial and temporal resolution dynamic contrast-enhanced magnetic resonance angiography using compressed sensing with magnitude image subtraction. Magn Reson Med. 2014;71(5):1771–83.CrossRefPubMed Rapacchi S, Han F, Natsuaki Y, Kroeker R, Plotnik A, Lehrman E, Sayre J, Laub G, Finn JP, Hu P. High spatial and temporal resolution dynamic contrast-enhanced magnetic resonance angiography using compressed sensing with magnitude image subtraction. Magn Reson Med. 2014;71(5):1771–83.CrossRefPubMed
8.
go back to reference Wang H, Miao Y, Zhou K, Yu Y, Bao S, He Q, Dai Y, Xuan SY, Tarabishy B, Ye Y, Hu J. Feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory. Med Phys. 2010;37(9):4971–81.CrossRefPubMedPubMedCentral Wang H, Miao Y, Zhou K, Yu Y, Bao S, He Q, Dai Y, Xuan SY, Tarabishy B, Ye Y, Hu J. Feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory. Med Phys. 2010;37(9):4971–81.CrossRefPubMedPubMedCentral
9.
go back to reference Smith DS, Welch EB, Li X, Arlinghaus LR, Loveless ME, Koyama T, Gore JC, Yankeelov TE. Quantitative effects of using compressed sensing in dynamic contrast enhanced MRI. Phys Med Biol. 2011;56(15):4933–46.CrossRefPubMedPubMedCentral Smith DS, Welch EB, Li X, Arlinghaus LR, Loveless ME, Koyama T, Gore JC, Yankeelov TE. Quantitative effects of using compressed sensing in dynamic contrast enhanced MRI. Phys Med Biol. 2011;56(15):4933–46.CrossRefPubMedPubMedCentral
10.
go back to reference Worters PW, Sung K, Stevens KJ, Koch KM, Hargreaves BA. Compressed-sensing multispectral imaging of the postoperative spine. J Magn Reson Imaging. 2013;37(1):243–8.CrossRefPubMed Worters PW, Sung K, Stevens KJ, Koch KM, Hargreaves BA. Compressed-sensing multispectral imaging of the postoperative spine. J Magn Reson Imaging. 2013;37(1):243–8.CrossRefPubMed
11.
go back to reference Zhang T, Chowdhury S, Lustig M, Barth RA, Alley MT, Grafendorfer T, Calderon PD, Robb FJ, Pauly JM, Vasanawala SS. Clinical performance of contrast enhanced abdominal pediatric MRI with fast combined parallel imaging compressed sensing reconstruction. J Magn Reson Imaging. 2014;40(1):13–25.CrossRefPubMed Zhang T, Chowdhury S, Lustig M, Barth RA, Alley MT, Grafendorfer T, Calderon PD, Robb FJ, Pauly JM, Vasanawala SS. Clinical performance of contrast enhanced abdominal pediatric MRI with fast combined parallel imaging compressed sensing reconstruction. J Magn Reson Imaging. 2014;40(1):13–25.CrossRefPubMed
12.
go back to reference Lustig M, Donoho D, Pauly JM. Sparse MRI. The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.CrossRefPubMed Lustig M, Donoho D, Pauly JM. Sparse MRI. The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.CrossRefPubMed
13.
go back to reference Haldar JP, Hernando D, Liang ZP. Compressed-sensing MRI with random encoding. IEEE Trans Med Imaging. 2011;30(4):893–903.CrossRefPubMed Haldar JP, Hernando D, Liang ZP. Compressed-sensing MRI with random encoding. IEEE Trans Med Imaging. 2011;30(4):893–903.CrossRefPubMed
14.
go back to reference Pandey A, Yoruk U, Keerthivasan M, Galons JP, Sharma P, Johnson K, Martin DR, Altbach MI, Bilgin A, Saranathan M. Multiresolution imaging using golden angle stack-of-stars and compressed sensing for dynamic MR urography. J Magn Reson Imaging. 2017;46(1):303–11.CrossRefPubMed Pandey A, Yoruk U, Keerthivasan M, Galons JP, Sharma P, Johnson K, Martin DR, Altbach MI, Bilgin A, Saranathan M. Multiresolution imaging using golden angle stack-of-stars and compressed sensing for dynamic MR urography. J Magn Reson Imaging. 2017;46(1):303–11.CrossRefPubMed
15.
go back to reference Sharma SD, Fong CL, Tzung BS, Law M, Nayak KS. Clinical image quality assessment of accelerated magnetic resonance neuroimaging using compressed sensing. Invest Radiol. 2013;48(9):638–45.CrossRefPubMed Sharma SD, Fong CL, Tzung BS, Law M, Nayak KS. Clinical image quality assessment of accelerated magnetic resonance neuroimaging using compressed sensing. Invest Radiol. 2013;48(9):638–45.CrossRefPubMed
16.
go back to reference Kawata S, Nalcopglu O. Constrained iterative reconstruction by the conjugate gradient method. IEEE Trans Med Imaging MI. 1985;-4(2):65–71.CrossRef Kawata S, Nalcopglu O. Constrained iterative reconstruction by the conjugate gradient method. IEEE Trans Med Imaging MI. 1985;-4(2):65–71.CrossRef
17.
go back to reference Zeng GL. Medical image reconstruction. a conceptual tutorial. New York: Springer; 2010. pp. 131–134 (146–147).CrossRef Zeng GL. Medical image reconstruction. a conceptual tutorial. New York: Springer; 2010. pp. 131–134 (146–147).CrossRef
18.
go back to reference Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–12.CrossRefPubMed Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–12.CrossRefPubMed
19.
go back to reference Akasaka T, Fujimoto K, Yamamoto T, Okada T, Fushumi Y, Yamamoto A, Tanaka T, Togashi K. Optimization of regularization parameters in compressed sensing of magnetic resonance angiography: can statistical image metrics mimic radiologists’ perception? PLoS One. 2016;11(1). Akasaka T, Fujimoto K, Yamamoto T, Okada T, Fushumi Y, Yamamoto A, Tanaka T, Togashi K. Optimization of regularization parameters in compressed sensing of magnetic resonance angiography: can statistical image metrics mimic radiologists’ perception? PLoS One. 2016;11(1).
20.
go back to reference Steckner MC, Drost DJ, Prato FS. Computing the modulation transfer function of a magnetic resonance imager. Med Phys. 1994;21(3):483–9.CrossRefPubMed Steckner MC, Drost DJ, Prato FS. Computing the modulation transfer function of a magnetic resonance imager. Med Phys. 1994;21(3):483–9.CrossRefPubMed
Metadata
Title
Undersampling patterns in k-space for compressed sensing MRI using two-dimensional Cartesian sampling
Authors
Shinya Kojima
Hiroyuki Shinohara
Takeyuki Hashimoto
Shigeru Suzuki
Publication date
01-09-2018
Publisher
Springer Singapore
Published in
Radiological Physics and Technology / Issue 3/2018
Print ISSN: 1865-0333
Electronic ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-018-0469-y

Other articles of this Issue 3/2018

Radiological Physics and Technology 3/2018 Go to the issue