Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 9/2019

01-09-2019 | Ultrasound | Original Article

Ultrasound simulation with deformable and patient-specific scatterer maps

Authors: Rastislav Starkov, Lin Zhang, Michael Bajka, Christine Tanner, Orcun Goksel

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 9/2019

Login to get access

Abstract

Purpose

Ray-tracing-based simulations model ultrasound (US) interactions with a custom geometric anatomical model, where US texture can be emulated via real-time point-spread function convolutions of a tissue scatterer representation. Such scatterer representations for realistic appearance are difficult to parameterize or model manually and do not respond to volumetric deformations such as those caused with tissue compression by the probe. Herein we utilize brightness mode (B-mode) estimated scatterer maps for ray tracing and propose to enhance the realism of ray-tracing-based simulations by incorporating dynamic speckle patterns that change compliant with tissue deformation.

Methods

In this work, we realistically simulate US texture deformations in the scatterer domain via back-projection of ray segments into a nominal state before sampling during simulation runtime. We estimate scatterer maps from background in vivo images using a pretrained generative adversarial network.

Results

We demonstrated our proposed scatterer estimation and runtime background fusion method on simulated transvaginal US scans of detailed surface-based foetal models. We show the viability of modelling deformations in the scatterer domain at interactive frame rates of 28 frames per second. A quantitative and a qualitative evaluations indicated improved realism in comparison to the state of the art.

Conclusions

Transferring a background image in a scatterer representation enables us to capture anatomical content in a physical space, in which deformations can be incorporated physically consistently before convolving with a US point-spread function during simulation runtime. This then uses the same imaging model on both the background and the hand-crafted models leading to a consistent and seamless compounding of contents in the scatterer space.
Appendix
Available only for authorised users
Footnotes
1
Provided as supplementary material.
 
Literature
1.
go back to reference Maul H, Scharf A, Baier P, Wüstemann M, Günter H, Gebauer G, Sohn C (2004) Ultrasound simulators: experience with the SonoTrainer and comparative review of other training systems. Ultrasound Obstet Gynecol 24(5):581–585CrossRefPubMed Maul H, Scharf A, Baier P, Wüstemann M, Günter H, Gebauer G, Sohn C (2004) Ultrasound simulators: experience with the SonoTrainer and comparative review of other training systems. Ultrasound Obstet Gynecol 24(5):581–585CrossRefPubMed
2.
go back to reference Ehricke H (1998) SONOSim3D: a multimedia system for sonography simulation and education with an extensible case database. Eur J Ultrasound 7(3):225–300CrossRefPubMed Ehricke H (1998) SONOSim3D: a multimedia system for sonography simulation and education with an extensible case database. Eur J Ultrasound 7(3):225–300CrossRefPubMed
3.
go back to reference Arkhurst W, Pommert A, Richter E, Frederking H, Kim S-I, Schubert R, Höhne KH (2001) A virtual reality training system for pediatric sonography. Proc Int Congr Ser 1230:483–487CrossRef Arkhurst W, Pommert A, Richter E, Frederking H, Kim S-I, Schubert R, Höhne KH (2001) A virtual reality training system for pediatric sonography. Proc Int Congr Ser 1230:483–487CrossRef
4.
go back to reference Tahmasebi AM, Abolmaesumi P, Hashtrudi-Zaad K (2007) A haptic-based ultrasound training/examination system (HUTES). In: Procedings of IEEE international conference on robotics and automation (ICRA), pp 3130–3131 Tahmasebi AM, Abolmaesumi P, Hashtrudi-Zaad K (2007) A haptic-based ultrasound training/examination system (HUTES). In: Procedings of IEEE international conference on robotics and automation (ICRA), pp 3130–3131
5.
go back to reference Sclaverano S, Chevreau G, Vadcard L, Mozer P, Troccaz J (2009) BiopSym: a simulator for enhanced learning of ultrasound-guided prostate biopsy. Stud Health Technol Inform 142:301–306PubMed Sclaverano S, Chevreau G, Vadcard L, Mozer P, Troccaz J (2009) BiopSym: a simulator for enhanced learning of ultrasound-guided prostate biopsy. Stud Health Technol Inform 142:301–306PubMed
6.
go back to reference Goksel O, Salcudean SE (2009) B-mode ultrasound image simulation in deformable 3-D medium. IEEE Trans Med Imaging 28(11):1657–1669CrossRefPubMed Goksel O, Salcudean SE (2009) B-mode ultrasound image simulation in deformable 3-D medium. IEEE Trans Med Imaging 28(11):1657–1669CrossRefPubMed
7.
go back to reference Reichl T, Passenger J, Acosta O, Salvado O (2009) Ultrasound goes GPU: real-time simulation using CUDA. In: Proceedings of SPIE medical imaging, p 726116 Reichl T, Passenger J, Acosta O, Salvado O (2009) Ultrasound goes GPU: real-time simulation using CUDA. In: Proceedings of SPIE medical imaging, p 726116
8.
go back to reference Gao H, Choi HF, Claus P, Boonen S, Jaecques S, Van Lenthe GH, Van der Perre G, Lauriks W, D’Hooge J (2009) A fast convolution-based methodology to simulate 2-D/3-D cardiac ultrasound images. IEEE Trans Ultrason Ferroelectr Freq Control 56(2):404–409CrossRefPubMed Gao H, Choi HF, Claus P, Boonen S, Jaecques S, Van Lenthe GH, Van der Perre G, Lauriks W, D’Hooge J (2009) A fast convolution-based methodology to simulate 2-D/3-D cardiac ultrasound images. IEEE Trans Ultrason Ferroelectr Freq Control 56(2):404–409CrossRefPubMed
9.
go back to reference Bürger B, Bettinghausen S, Radle M, Hesser J (2013) Real-time GPU-based ultrasound simulation using deformable mesh models. IEEE Trans Med Imaging 32(3):609–618CrossRefPubMed Bürger B, Bettinghausen S, Radle M, Hesser J (2013) Real-time GPU-based ultrasound simulation using deformable mesh models. IEEE Trans Med Imaging 32(3):609–618CrossRefPubMed
10.
go back to reference Mattausch O, Goksel O (2016) Monte-Carlo ray tracing for realistic ultrasound training simulation. In: Proceedings of the eurographics workshop visual computing biomedicine (EG VCBM), pp 173–181 Mattausch O, Goksel O (2016) Monte-Carlo ray tracing for realistic ultrasound training simulation. In: Proceedings of the eurographics workshop visual computing biomedicine (EG VCBM), pp 173–181
11.
go back to reference Mattausch O, Makhinya M, Goksel O (2018) Realistic ultrasound simulation of complex surface models using interactive Monte-Carlo path tracing. Comput Graph Forum 37(1):202–213CrossRef Mattausch O, Makhinya M, Goksel O (2018) Realistic ultrasound simulation of complex surface models using interactive Monte-Carlo path tracing. Comput Graph Forum 37(1):202–213CrossRef
12.
go back to reference Tanner C, Starkov R, Bajka M, Goksel O (2018) Framework for fusion of data- and model-based approaches for ultrasound simulation. In: Proceedings of MICCAI, pp 332–339CrossRef Tanner C, Starkov R, Bajka M, Goksel O (2018) Framework for fusion of data- and model-based approaches for ultrasound simulation. In: Proceedings of MICCAI, pp 332–339CrossRef
13.
go back to reference Flach B, Makhinya M, Goksel O (2016) PURE: panoramic ultrasound reconstruction by seamless stitching of volumes. In: Proceedings of MICCAI workshop simulation and synthesis in medical imaging (SASHIMI), pp 75–84CrossRef Flach B, Makhinya M, Goksel O (2016) PURE: panoramic ultrasound reconstruction by seamless stitching of volumes. In: Proceedings of MICCAI workshop simulation and synthesis in medical imaging (SASHIMI), pp 75–84CrossRef
14.
go back to reference Mattausch O, Goksel O (2018) Image-based reconstruction of tissue scatterers using beam steering for ultrasound simulation. IEEE Trans Med Imag 37(3):767–780CrossRef Mattausch O, Goksel O (2018) Image-based reconstruction of tissue scatterers using beam steering for ultrasound simulation. IEEE Trans Med Imag 37(3):767–780CrossRef
15.
go back to reference Al Bahou A, Tanner C, Goksel O (2019) SCATGAN for reconstruction of ultrasound scatterers using generative adversarial networks. In: Proceedings of IEEE international symposium Biomedical Imaging (ISBI), accepted (also arXiv:1902.00469) Al Bahou A, Tanner C, Goksel O (2019) SCATGAN for reconstruction of ultrasound scatterers using generative adversarial networks. In: Proceedings of IEEE international symposium Biomedical Imaging (ISBI), accepted (also arXiv:​1902.​00469)
16.
go back to reference Starkov R, Tanner C, Bajka M, Goksel O (2019) Ultrasound simulation with animated anatomical models and on-the-fly fusion with real images via path-tracing. Comput Graph 82:44–52CrossRef Starkov R, Tanner C, Bajka M, Goksel O (2019) Ultrasound simulation with animated anatomical models and on-the-fly fusion with real images via path-tracing. Comput Graph 82:44–52CrossRef
17.
go back to reference Kajiya JT (1986) The rendering equation. ACM SIGGRAPH Comput Graph 20(4):143–150CrossRef Kajiya JT (1986) The rendering equation. ACM SIGGRAPH Comput Graph 20(4):143–150CrossRef
18.
go back to reference Mattausch O, Ren E, Bajka M, Vanhoey K, Goksel O (2017) Comparison of texture synthesis methods for content generation in ultrasound simulation for training. In: Proceedings of SPIE Med Imaging, p 1013523 Mattausch O, Ren E, Bajka M, Vanhoey K, Goksel O (2017) Comparison of texture synthesis methods for content generation in ultrasound simulation for training. In: Proceedings of SPIE Med Imaging, p 1013523
19.
go back to reference Bamber JC, Dickinson RJ (1980) Ultrasonic B-scanning: a computer simulation. Phys Med Biol 25(3):463CrossRefPubMed Bamber JC, Dickinson RJ (1980) Ultrasonic B-scanning: a computer simulation. Phys Med Biol 25(3):463CrossRefPubMed
20.
go back to reference Jensen J (2004) Simulation of advanced ultrasound systems using field II. Proc IEEE Int Symp Biomed Imaging 1:636–639 Jensen J (2004) Simulation of advanced ultrasound systems using field II. Proc IEEE Int Symp Biomed Imaging 1:636–639
21.
go back to reference Mattausch O, Goksel O (2015) Scatterer reconstruction and parametrization of homogeneous tissue for ultrasound image simulation. In: Proceedings of IEEE engineering medicine and biology conference (EMBC), pp 6350–6353 Mattausch O, Goksel O (2015) Scatterer reconstruction and parametrization of homogeneous tissue for ultrasound image simulation. In: Proceedings of IEEE engineering medicine and biology conference (EMBC), pp 6350–6353
22.
go back to reference Müller M, Stam J, James D, Thürey N (2008) Real time physics: class notes. In: Proceedings of ACM SIGGRAPH classes, pp 88:1–88:90 Müller M, Stam J, James D, Thürey N (2008) Real time physics: class notes. In: Proceedings of ACM SIGGRAPH classes, pp 88:1–88:90
23.
go back to reference Petrinec K (2013) Patient-specific interactive ultrasound image simulation with soft-tissue deformation. Ph.D. thesis, University of California Petrinec K (2013) Patient-specific interactive ultrasound image simulation with soft-tissue deformation. Ph.D. thesis, University of California
24.
go back to reference Zikic D, Wein W, Khamene A, Clevert D-A, Navab N (2006) Fast deformable registration of 3D-ultrasound data using a variational approach. In: Proceedings of MICCAI, pp 915–923CrossRef Zikic D, Wein W, Khamene A, Clevert D-A, Navab N (2006) Fast deformable registration of 3D-ultrasound data using a variational approach. In: Proceedings of MICCAI, pp 915–923CrossRef
25.
go back to reference Virga S, Göbl R, Baust M, Navab N, Hennersperger C (2018) Use the force: deformation correction in robotic 3D ultrasound. Int J Comput Assist Radiol Surg 13(5):619–627CrossRefPubMed Virga S, Göbl R, Baust M, Navab N, Hennersperger C (2018) Use the force: deformation correction in robotic 3D ultrasound. Int J Comput Assist Radiol Surg 13(5):619–627CrossRefPubMed
26.
go back to reference Flach B, Makhinya M, Goksel O (2016) Model-based compensation of tissue deformation during data acquisition for interpolative ultrasound simulation. In: Proceedings of IEEE international symposium biomedical imaging (ISBI) Flach B, Makhinya M, Goksel O (2016) Model-based compensation of tissue deformation during data acquisition for interpolative ultrasound simulation. In: Proceedings of IEEE international symposium biomedical imaging (ISBI)
27.
go back to reference Selmi S-Y, Promayon E, Sarrazin J, Troccaz J (2014) 3D interactive ultrasound image deformation for realistic prostate biopsy simulation. In: Proceedings of biomedical simulation, pp 122–130CrossRef Selmi S-Y, Promayon E, Sarrazin J, Troccaz J (2014) 3D interactive ultrasound image deformation for realistic prostate biopsy simulation. In: Proceedings of biomedical simulation, pp 122–130CrossRef
28.
go back to reference Bro-Nielsen M (1998) Finite element modeling in surgery simulation. Proc IEEE 86(3):490–503CrossRef Bro-Nielsen M (1998) Finite element modeling in surgery simulation. Proc IEEE 86(3):490–503CrossRef
29.
go back to reference Clark JH (1976) Hierarchical geometric models for visible surface algorithms. Commun ACM 19(10):547–554CrossRef Clark JH (1976) Hierarchical geometric models for visible surface algorithms. Commun ACM 19(10):547–554CrossRef
30.
go back to reference Stich M, Friedrich H, Dietrich A (2009) Spatial splits in bounding volume hierarchies. In: Proceedings of high-perform graph (HPG), pp 7–13 Stich M, Friedrich H, Dietrich A (2009) Spatial splits in bounding volume hierarchies. In: Proceedings of high-perform graph (HPG), pp 7–13
32.
go back to reference Karras T, Aila T (2013) Fast parallel construction of high-quality bounding volume hierarchies. In: Proceedings of high-perform graph (HPG), pp 89–99 Karras T, Aila T (2013) Fast parallel construction of high-quality bounding volume hierarchies. In: Proceedings of high-perform graph (HPG), pp 89–99
33.
go back to reference Lext J, Akenine-Möller T (2001) Towards rapid reconstruction for animated ray tracing. In: Proceedings of eurograph short present, pp 311–318 Lext J, Akenine-Möller T (2001) Towards rapid reconstruction for animated ray tracing. In: Proceedings of eurograph short present, pp 311–318
34.
go back to reference Loughna P, Chitty L, Evans T, Chudleigh T (2009) Fetal size and dating: charts recommended for clinical obstetric practice. Ultrasound 17(3):160–166CrossRef Loughna P, Chitty L, Evans T, Chudleigh T (2009) Fetal size and dating: charts recommended for clinical obstetric practice. Ultrasound 17(3):160–166CrossRef
35.
go back to reference Rubin SM, Whitted T (1980) A 3-dimensional representation for fast rendering of complex scenes. ACM SIGGRAPH Comput Graph 14(3):110–116CrossRef Rubin SM, Whitted T (1980) A 3-dimensional representation for fast rendering of complex scenes. ACM SIGGRAPH Comput Graph 14(3):110–116CrossRef
36.
go back to reference Faure F, Duriez C, Delingette H, Allard J, Gilles B, Marchesseau S, Talbot H, Courtecuisse H, Bousquet G, Peterlik I, Cotin S (2012) Sofa: a multi-model framework for interactive physical simulation. In: Soft tissue biomechanical modeling for computer assisted surgery. Springer, Berlin, pp 283–321 Faure F, Duriez C, Delingette H, Allard J, Gilles B, Marchesseau S, Talbot H, Courtecuisse H, Bousquet G, Peterlik I, Cotin S (2012) Sofa: a multi-model framework for interactive physical simulation. In: Soft tissue biomechanical modeling for computer assisted surgery. Springer, Berlin, pp 283–321
Metadata
Title
Ultrasound simulation with deformable and patient-specific scatterer maps
Authors
Rastislav Starkov
Lin Zhang
Michael Bajka
Christine Tanner
Orcun Goksel
Publication date
01-09-2019
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 9/2019
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-02054-5

Other articles of this Issue 9/2019

International Journal of Computer Assisted Radiology and Surgery 9/2019 Go to the issue