Skip to main content
Top
Published in: BMC Pediatrics 1/2021

Open Access 01-12-2021 | Ultrasound | Research article

Normal sonographic liver and spleen dimensions in a central European pediatric population

Authors: Stephan Waelti, Tim Fischer, Simon Wildermuth, Sebastian Leschka, Tobias Dietrich, Sabine Guesewell, Pascal Mueller, Michael Ditchfield, Stefan Markart

Published in: BMC Pediatrics | Issue 1/2021

Login to get access

Abstract

Background

Organ size is influenced by a number of factors. Age, height, weight, and ethnicity are known influencing factors. Pediatric populations have changed over time, puberty beginning earlier resulting in a changing growth pattern of their organs. Hence, contemporary charts using local data are considered the most appropriate for a given population. Sonographic charts for liver size for a predominantly Caucasian population are limited, which has implications for clinical practice. The aim of this study was to define a contemporary normative range of liver and spleen sizes for a healthy, predominantly Caucasian population and for all pediatric age groups (0–18 years) and to investigate whether there is a size difference between genders and ethnicities.

Methods

Retrospective study including children with normal sonographic findings and no evidence of liver or splenic disease clinically. Craniocaudal and anteroposterior dimensions are measured for the right and left lobe of the liver, and craniocaudal dimension for the spleen. Relationship of the liver and spleen dimensions with age, body length, body surface area, weight, and gender were investigated. Charts of normal values were established. Values were compared to studies involving other ethnicities and to one study carried out in 1983 involving the same ethnicity.

Results

Seven hundred thirty-six children (371 boys, 365 girls) aged 1 day - 18.4 years were included. From the second year of life, the craniocaudal dimension of the right lobe of the liver is 1–2 cm larger in the Central European population compared with non-Caucasian populations at a given age. Liver size of Central European children in 2020 is greater compared to a similar population almost 40 years ago. The craniocaudal dimension of the spleen of Central European, US-American and Turkish children is similar. The difference between genders is statistically significant for both the liver and the spleen, being larger in boys.

Conclusion

Contemporary and ethnically appropriate reference charts for liver and spleen measurements should be used, especially for liver size. The effect of ethnicity is reduced if patient height rather than age is referenced.
Literature
1.
go back to reference Groell R, Machan L, Schaffler GJ, Uggowitzer M, Peichel KH. Morphometric measurement of abdominal organs. Comparison of ultrasound and spiral CT. Acta Radiol. 1997;38(6):982–5.PubMed Groell R, Machan L, Schaffler GJ, Uggowitzer M, Peichel KH. Morphometric measurement of abdominal organs. Comparison of ultrasound and spiral CT. Acta Radiol. 1997;38(6):982–5.PubMed
2.
go back to reference Konus OL, Ozdemir A, Akkaya A, Erbas G, Celik H, Isik S. Normal liver, spleen, and kidney dimensions in neonates, infants, and children: evaluation with sonography. AJR Am J Roentgenol. 1998;171(6):1693–8.CrossRef Konus OL, Ozdemir A, Akkaya A, Erbas G, Celik H, Isik S. Normal liver, spleen, and kidney dimensions in neonates, infants, and children: evaluation with sonography. AJR Am J Roentgenol. 1998;171(6):1693–8.CrossRef
3.
go back to reference Luk WH, Lo AX, Au-Yeung AW, Liu KK, Woo YH, Chiang CC, et al. Renal length nomogram in Hong Kong Asian children: sonographic measurement and multivariable approach. J Paediatr Child Health. 2010;46(6):310–5.CrossRef Luk WH, Lo AX, Au-Yeung AW, Liu KK, Woo YH, Chiang CC, et al. Renal length nomogram in Hong Kong Asian children: sonographic measurement and multivariable approach. J Paediatr Child Health. 2010;46(6):310–5.CrossRef
4.
go back to reference Loftus WK, Gent RJ, LeQuesne GW, Metreweli C. Renal length in Chinese children: sonographic measurement and comparison with western data. J Clin Ultrasound. 1998;26(7):349–52.CrossRef Loftus WK, Gent RJ, LeQuesne GW, Metreweli C. Renal length in Chinese children: sonographic measurement and comparison with western data. J Clin Ultrasound. 1998;26(7):349–52.CrossRef
5.
go back to reference Amatya P, Shah D, Gupta N, Bhatta NK. Clinical and ultrasonographic measurement of liver size in normal children. Indian J Pediatr. 2014;81(5):441–5.CrossRef Amatya P, Shah D, Gupta N, Bhatta NK. Clinical and ultrasonographic measurement of liver size in normal children. Indian J Pediatr. 2014;81(5):441–5.CrossRef
6.
go back to reference Thapa NB, Shah S, Pradhan A, Rijal K, Pradhan A, Basnet S. Sonographic assessment of the Normal dimensions of liver, spleen, and kidney in healthy children at tertiary care hospital. Kathmandu Univ Med J (KUMJ). 2015;13(52):286–91. Thapa NB, Shah S, Pradhan A, Rijal K, Pradhan A, Basnet S. Sonographic assessment of the Normal dimensions of liver, spleen, and kidney in healthy children at tertiary care hospital. Kathmandu Univ Med J (KUMJ). 2015;13(52):286–91.
7.
go back to reference Coombs PR, Lavender I, Leung MYZ, Woods JC, Paul E, Webb N, et al. Normal sonographic renal length measurements in an Australian pediatric population. Pediatr Radiol. 2019;49(13):1754–61.CrossRef Coombs PR, Lavender I, Leung MYZ, Woods JC, Paul E, Webb N, et al. Normal sonographic renal length measurements in an Australian pediatric population. Pediatr Radiol. 2019;49(13):1754–61.CrossRef
8.
go back to reference Spencer J, Wang Z, Hoy W. Low birth weight and reduced renal volume in Aboriginal children. Am J Kidney Dis. 2001;37(5):915–20.CrossRef Spencer J, Wang Z, Hoy W. Low birth weight and reduced renal volume in Aboriginal children. Am J Kidney Dis. 2001;37(5):915–20.CrossRef
9.
go back to reference Buttke DE, Sircar K, Martin C. Exposures to endocrine-disrupting chemicals and age of menarche in adolescent girls in NHANES (2003-2008). Environ Health Perspect. 2012;120(11):1613–8.CrossRef Buttke DE, Sircar K, Martin C. Exposures to endocrine-disrupting chemicals and age of menarche in adolescent girls in NHANES (2003-2008). Environ Health Perspect. 2012;120(11):1613–8.CrossRef
10.
go back to reference Euling SY, Selevan SG, Pescovitz OH, Skakkebaek NE. Role of environmental factors in the timing of puberty. Pediatrics. 2008;121(Suppl 3):S167–71.CrossRef Euling SY, Selevan SG, Pescovitz OH, Skakkebaek NE. Role of environmental factors in the timing of puberty. Pediatrics. 2008;121(Suppl 3):S167–71.CrossRef
11.
go back to reference Herman-Giddens ME, Steffes J, Harris D, Slora E, Hussey M, Dowshen SA, et al. Secondary sexual characteristics in boys: data from the pediatric research in office settings network. Pediatrics. 2012;130(5):e1058–68.CrossRef Herman-Giddens ME, Steffes J, Harris D, Slora E, Hussey M, Dowshen SA, et al. Secondary sexual characteristics in boys: data from the pediatric research in office settings network. Pediatrics. 2012;130(5):e1058–68.CrossRef
12.
go back to reference da Rocha APSF SMS, de Oliveira IRS, Widman A, Chammas MC, de Oliveira LAN, Cerri GG. Sonographic determination of liver size in healthy newborns, infants and children under 7 years of age. Radiol Bras. 2009;42(1):7–13.CrossRef da Rocha APSF SMS, de Oliveira IRS, Widman A, Chammas MC, de Oliveira LAN, Cerri GG. Sonographic determination of liver size in healthy newborns, infants and children under 7 years of age. Radiol Bras. 2009;42(1):7–13.CrossRef
13.
go back to reference Dhingra B, Sharma S, Mishra D, Kumari R, Pandey RM, Aggarwal S. Normal values of liver and spleen size by ultrasonography in Indian children. Indian Pediatr. 2010;47(6):487–92.CrossRef Dhingra B, Sharma S, Mishra D, Kumari R, Pandey RM, Aggarwal S. Normal values of liver and spleen size by ultrasonography in Indian children. Indian Pediatr. 2010;47(6):487–92.CrossRef
14.
go back to reference Dittrich M, Milde S, Dinkel E, Baumann W, Weitzel D. Sonographic biometry of liver and spleen size in childhood. Pediatr Radiol. 1983;13(4):206–11.CrossRef Dittrich M, Milde S, Dinkel E, Baumann W, Weitzel D. Sonographic biometry of liver and spleen size in childhood. Pediatr Radiol. 1983;13(4):206–11.CrossRef
15.
go back to reference Megremis SD, Vlachonikolis IG, Tsilimigaki AM. Spleen length in childhood with US: normal values based on age, sex, and somatometric parameters. Radiology. 2004;231(1):129–34.CrossRef Megremis SD, Vlachonikolis IG, Tsilimigaki AM. Spleen length in childhood with US: normal values based on age, sex, and somatometric parameters. Radiology. 2004;231(1):129–34.CrossRef
16.
go back to reference Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr. 1978;93(1):62–6.CrossRef Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr. 1978;93(1):62–6.CrossRef
17.
go back to reference Calle-Toro JS, Back SJ, Viteri B, Andronikou S, Kaplan SL. Liver, spleen, and kidney size in children as measured by ultrasound: a systematic review. J Ultrasound Med. 2020;39(2):223–30.CrossRef Calle-Toro JS, Back SJ, Viteri B, Andronikou S, Kaplan SL. Liver, spleen, and kidney size in children as measured by ultrasound: a systematic review. J Ultrasound Med. 2020;39(2):223–30.CrossRef
18.
go back to reference Ozdikici M. The relationship between splenic length in healthy children from the eastern Anatolia region and sex, age, body height and weight. J Ultrason. 2018;18(72):5–8.CrossRef Ozdikici M. The relationship between splenic length in healthy children from the eastern Anatolia region and sex, age, body height and weight. J Ultrason. 2018;18(72):5–8.CrossRef
19.
go back to reference Rosenberg HK, Markowitz RI, Kolberg H, Park C, Hubbard A, Bellah RD. Normal splenic size in infants and children: sonographic measurements. AJR Am J Roentgenol. 1991;157(1):119–21.CrossRef Rosenberg HK, Markowitz RI, Kolberg H, Park C, Hubbard A, Bellah RD. Normal splenic size in infants and children: sonographic measurements. AJR Am J Roentgenol. 1991;157(1):119–21.CrossRef
20.
go back to reference Chen JJ, Pugach J, Patel M, Luisiri A, Steinhardt GF. The renal length nomogram: multivariable approach. J Urol. 2002;168(5):2149–52.CrossRef Chen JJ, Pugach J, Patel M, Luisiri A, Steinhardt GF. The renal length nomogram: multivariable approach. J Urol. 2002;168(5):2149–52.CrossRef
21.
go back to reference Zerin JM, Meyer RD. Sonographic assessment of renal length in the first year of life: the problem of "spurious nephromegaly". Pediatr Radiol. 2000;30(1):52–7.CrossRef Zerin JM, Meyer RD. Sonographic assessment of renal length in the first year of life: the problem of "spurious nephromegaly". Pediatr Radiol. 2000;30(1):52–7.CrossRef
Metadata
Title
Normal sonographic liver and spleen dimensions in a central European pediatric population
Authors
Stephan Waelti
Tim Fischer
Simon Wildermuth
Sebastian Leschka
Tobias Dietrich
Sabine Guesewell
Pascal Mueller
Michael Ditchfield
Stefan Markart
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2021
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-021-02756-3

Other articles of this Issue 1/2021

BMC Pediatrics 1/2021 Go to the issue