Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 5/2019

01-05-2019 | Ultrasound | Original Article

Automatic segmentation of bone surfaces from ultrasound using a filter-layer-guided CNN

Authors: Ahmed Z. Alsinan, Vishal M. Patel, Ilker Hacihaliloglu

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 5/2019

Login to get access

Abstract

Purpose

Ultrasound (US) provides real-time, two-/three-dimensional safe imaging. Due to these capabilities, it is considered a safe alternative to intra-operative fluoroscopy in various computer-assisted orthopedic surgery (CAOS) procedures. However, interpretation of the collected bone US data is difficult due to high levels of noise, various imaging artifacts, and bone surfaces response appearing several millimeters (mm) in thickness. For US-guided CAOS procedures, it is an essential objective to have a segmentation mechanism, that is both robust and computationally inexpensive.

Method

In this paper, we present our development of a convolutional neural network-based technique for segmentation of bone surfaces from in vivo US scans. The novelty of our proposed design is that it utilizes fusion of feature maps and employs multi-modal images to abate sensitivity to variations caused by imaging artifacts and low intensity bone boundaries. B-mode US images, and their corresponding local phase filtered images are used as multi-modal inputs for the proposed fusion network. Different fusion architectures are investigated for fusing the B-mode US image and the local phase features.

Results

The proposed methods was quantitatively and qualitatively evaluated on 546 in vivo scans by scanning 14 healthy subjects. We achieved an average F-score above 95% with an average bone surface localization error of 0.2 mm. The reported results are statistically significant compared to state-of-the-art.

Conclusions

Reported accurate and robust segmentation results make the proposed method promising in CAOS applications. Further extensive validations are required in order to fully understand the clinical utility of the proposed method.
Literature
1.
go back to reference Baka N, Leenstra S, van Walsum T (2017) Ultrasound aided vertebral level localization for lumbar surgery. IEEE Trans Med Imaging 36(10):2138–2147CrossRefPubMed Baka N, Leenstra S, van Walsum T (2017) Ultrasound aided vertebral level localization for lumbar surgery. IEEE Trans Med Imaging 36(10):2138–2147CrossRefPubMed
2.
go back to reference Cernazanu-Glavan C, Holban S (2013) Segmentation of bone structure in x-ray images using convolutional neural network. Adv Electr Comput Eng 13(1):87–94CrossRef Cernazanu-Glavan C, Holban S (2013) Segmentation of bone structure in x-ray images using convolutional neural network. Adv Electr Comput Eng 13(1):87–94CrossRef
3.
go back to reference Feichtenhofer C, Pinz A, Zisserman A (2016) Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1933–1941 Feichtenhofer C, Pinz A, Zisserman A (2016) Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1933–1941
4.
go back to reference Hacihaliloglu I (2017) Enhancement of bone shadow region using local phase-based ultrasound transmission maps. Int J Comput Assist Radiol Surg 12(6):951–960CrossRefPubMed Hacihaliloglu I (2017) Enhancement of bone shadow region using local phase-based ultrasound transmission maps. Int J Comput Assist Radiol Surg 12(6):951–960CrossRefPubMed
5.
go back to reference Hacihaliloglu I (2017) Localization of bone surfaces from ultrasound data using local phase information and signal transmission maps. In: International workshop and challenge on computational methods and clinical applications in musculoskeletal imaging. Springer, pp 1–11 Hacihaliloglu I (2017) Localization of bone surfaces from ultrasound data using local phase information and signal transmission maps. In: International workshop and challenge on computational methods and clinical applications in musculoskeletal imaging. Springer, pp 1–11
7.
go back to reference Hacihaliloglu I, Guy P, Hodgson AJ, Abugharbieh R (2014) Volume-specific parameter optimization of 3d local phase features for improved extraction of bone surfaces in ultrasound. Int J Med Robot Comput Assist Surg 10(4):461–473CrossRef Hacihaliloglu I, Guy P, Hodgson AJ, Abugharbieh R (2014) Volume-specific parameter optimization of 3d local phase features for improved extraction of bone surfaces in ultrasound. Int J Med Robot Comput Assist Surg 10(4):461–473CrossRef
8.
go back to reference Hacihaliloglu I, Rasoulian A, Rohling RN, Abolmaesumi P (2014) Local phase tensor features for 3-d ultrasound to statistical shape \(+\) pose spine model registration. IEEE Trans Med Imaging 33(11):2167–2179CrossRefPubMed Hacihaliloglu I, Rasoulian A, Rohling RN, Abolmaesumi P (2014) Local phase tensor features for 3-d ultrasound to statistical shape \(+\) pose spine model registration. IEEE Trans Med Imaging 33(11):2167–2179CrossRefPubMed
9.
go back to reference Hazirbas C, Ma L, Domokos C, Cremers D (2016) Fusenet: incorporating depth into semantic segmentation via fusion-based CNN architecture. In: Asian conference on computer vision. Springer, pp 213–228 Hazirbas C, Ma L, Domokos C, Cremers D (2016) Fusenet: incorporating depth into semantic segmentation via fusion-based CNN architecture. In: Asian conference on computer vision. Springer, pp 213–228
10.
go back to reference Jain V, Bollmann B, Richardson M, Berger DR, Helmstaedter MN, Briggman KL, Denk W, Bowden JB, Mendenhall JM, Abraham WC et al (2010) Boundary learning by optimization with topological constraints. In: 2010 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 2488–2495 Jain V, Bollmann B, Richardson M, Berger DR, Helmstaedter MN, Briggman KL, Denk W, Bowden JB, Mendenhall JM, Abraham WC et al (2010) Boundary learning by optimization with topological constraints. In: 2010 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 2488–2495
11.
go back to reference Laina I, Rupprecht C, Belagiannis V, Tombari F, Navab N (2016) Deeper depth prediction with fully convolutional residual networks. In: 2016 Fourth international conference on 3D vision (3DV), pp 239–248 Laina I, Rupprecht C, Belagiannis V, Tombari F, Navab N (2016) Deeper depth prediction with fully convolutional residual networks. In: 2016 Fourth international conference on 3D vision (3DV), pp 239–248
12.
go back to reference Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440 Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440
13.
go back to reference Organization WH (2003) The burden of musculoskeletal conditions at the start of the new millennium: report of a who scientific group. WHO Technical Report Series 919 Organization WH (2003) The burden of musculoskeletal conditions at the start of the new millennium: report of a who scientific group. WHO Technical Report Series 919
14.
go back to reference Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850CrossRef Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850CrossRef
15.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241
16.
go back to reference Salehi M, Prevost R, Moctezuma JL, Navab N, Wein W (2017) Precise ultrasound bone registration with learning-based segmentation and speed of sound calibration. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 682–690 Salehi M, Prevost R, Moctezuma JL, Navab N, Wein W (2017) Precise ultrasound bone registration with learning-based segmentation and speed of sound calibration. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 682–690
18.
go back to reference Valada A, Vertens J, Dhall A, Burgard W (2017) Adapnet: Adaptive semantic segmentation in adverse environmental conditions. In: 2017 IEEE International conference on robotics and automation (ICRA). IEEE, pp 4644–4651 Valada A, Vertens J, Dhall A, Burgard W (2017) Adapnet: Adaptive semantic segmentation in adverse environmental conditions. In: 2017 IEEE International conference on robotics and automation (ICRA). IEEE, pp 4644–4651
19.
go back to reference Villa M, Dardenne G, Nasan M, Letissier H, Hamitouche C, Stindel E (2018) FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images. Int J Comput Assist Radiol Surg 13(11):1707–1716CrossRefPubMed Villa M, Dardenne G, Nasan M, Letissier H, Hamitouche C, Stindel E (2018) FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images. Int J Comput Assist Radiol Surg 13(11):1707–1716CrossRefPubMed
20.
go back to reference Wang P, Patel VM, Hacihaliloglu I (2018) Simultaneous segmentation and classification of bone surfaces from ultrasound using a multi-feature guided CNN. In: Medical image computing and computer assisted intervention Wang P, Patel VM, Hacihaliloglu I (2018) Simultaneous segmentation and classification of bone surfaces from ultrasound using a multi-feature guided CNN. In: Medical image computing and computer assisted intervention
Metadata
Title
Automatic segmentation of bone surfaces from ultrasound using a filter-layer-guided CNN
Authors
Ahmed Z. Alsinan
Vishal M. Patel
Ilker Hacihaliloglu
Publication date
01-05-2019
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 5/2019
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-01934-0

Other articles of this Issue 5/2019

International Journal of Computer Assisted Radiology and Surgery 5/2019 Go to the issue