Skip to main content
Top
Published in: BMC Pediatrics 1/2019

Open Access 01-12-2019 | Ultrasound | Research article

Analyses of pathological cranial ultrasound findings in neonates that fall outside recent indication guidelines: results of a population-based birth cohort: survey of neonates in Pommerania (SNiP-study)

Authors: Judith Weise, Matthias Heckmann, Hagen Bahlmann, Till Ittermann, Heike Allenberg, Grzegorz Domanski, Anja Erika Lange

Published in: BMC Pediatrics | Issue 1/2019

Login to get access

Abstract

Background

Recent guidelines recommend a cranial ultrasound (CU) in neonates born at < 30 weeks gestation, admitted to the neonatal intensive care unit (NICU), or with a CU indication. Here, we addressed the need to extend these recommendations.

Methods

We retrospectively reviewed 5107 CUs acquired in the population-based Survey of Neonates in Pomerania, conducted in 2002 to 2008. Neonates with conspicuous CUs that were ≥ 30 weeks gestation without recent indications for CU were identified and assigned to the following groups: with (I) or without (II) admission to neonatal care. We designated CU conspicuities as mild (MC) or significant (SC), and we investigated related neurodevelopment during follow-up.

Results

Of 5107 neonates, 5064 were born at ≥30 weeks gestation and of those, 4306 received CUs without any indication for this examination. We found conspicuities in 7.7% (n = 47/610) of group I (n = 30 MC, n = 17 SC), and 3.2% (n = 117/3696) of group II (n = 100 MC, n = 17 SC). In group II, SC comprised, e.g., bilateral cysts, partial agenesis of the corpus callosum, and periventricular leukomalacia. Follow-up was available in 75% of infants in group II with MCs and SCs; of these, 12.8% had an abnormal neurological follow-up.

Conclusions

We detected a high number of conspicuities in neonates without a CU indication. However, we could not demonstrate that ultrasound findings were associated with the neurological follow-up or any advantage to an earlier diagnosis. Our data did not support extending current guidelines or a general CU screening policy for all neonates.
Literature
1.
go back to reference Fox TB. Sonography of the neonatal brain. Journal of Diagnostic Medical Sonography. 2009;25:331–48.CrossRef Fox TB. Sonography of the neonatal brain. Journal of Diagnostic Medical Sonography. 2009;25:331–48.CrossRef
2.
go back to reference Fritz J, Polansky SM, O'Connor SC. Neonatal neurosonography. Semin Ultrasound CT MR. 2014;35:349–64.CrossRef Fritz J, Polansky SM, O'Connor SC. Neonatal neurosonography. Semin Ultrasound CT MR. 2014;35:349–64.CrossRef
3.
go back to reference Ment LR, Bada HS, Barnes P, et al. Practice parameter: neuroimaging of the neonate: report of the quality standards Subcommittee of the American Academy of neurology and the practice Committee of the Child Neurology Society. Neurology. 2002;58:1726–38.CrossRef Ment LR, Bada HS, Barnes P, et al. Practice parameter: neuroimaging of the neonate: report of the quality standards Subcommittee of the American Academy of neurology and the practice Committee of the Child Neurology Society. Neurology. 2002;58:1726–38.CrossRef
4.
go back to reference Leijser LM. de Vries, Linda S, Cowan FM. Using cerebral ultrasound effectively in the newborn infant. Early hum. Dev. 2006;82:827–35. Leijser LM. de Vries, Linda S, Cowan FM. Using cerebral ultrasound effectively in the newborn infant. Early hum. Dev. 2006;82:827–35.
5.
go back to reference American Institute of Ultrasound in Medicine (AIUM): American College of Radiology (ACR); Society of Radiologists in Ultrasound(SRU) Collaborators. AIUM practice guideline for the performance of neurosonography in neonates and infants. J Ultrasound Med. 2014;33(6):1103–10. https://doi.org/10.7863/ultra.33.6.1103 American Institute of Ultrasound in Medicine (AIUM): American College of Radiology (ACR); Society of Radiologists in Ultrasound(SRU) Collaborators. AIUM practice guideline for the performance of neurosonography in neonates and infants. J Ultrasound Med. 2014;33(6):1103–10. https://​doi.​org/​10.​7863/​ultra.​33.​6.​1103
6.
go back to reference Ebner A, Thyrian JR, Lange A, et al. Survey of neonates in Pomerania (SNiP): a population-based birth study--objectives, design and population coverage. Paediatr Perinat Epidemiol. 2010;24:190–9.CrossRef Ebner A, Thyrian JR, Lange A, et al. Survey of neonates in Pomerania (SNiP): a population-based birth study--objectives, design and population coverage. Paediatr Perinat Epidemiol. 2010;24:190–9.CrossRef
7.
go back to reference Riccabona M, Schweintzger G, vonRohden L, et al. Documentation guideline: Documentation of Ultrasound of the Neurocranium (Standarddokumentation der Sonografie des kindlichen Neurokraniums), 2004. Riccabona M, Schweintzger G, vonRohden L, et al. Documentation guideline: Documentation of Ultrasound of the Neurocranium (Standarddokumentation der Sonografie des kindlichen Neurokraniums), 2004.
8.
go back to reference Fernandez Alvarez J. R, Amess PN. Gandhi RS et al Diagnostic value of subependymal pseudocysts and choroid plexus cysts on neonatal cerebral ultrasound: a meta-analysis Arch Dis Child Fetal Neonatal Ed. 2009;94:F443–6.PubMed Fernandez Alvarez J. R, Amess PN. Gandhi RS et al Diagnostic value of subependymal pseudocysts and choroid plexus cysts on neonatal cerebral ultrasound: a meta-analysis Arch Dis Child Fetal Neonatal Ed. 2009;94:F443–6.PubMed
9.
go back to reference Ballardini E, Tarocco A, Baldan A, et al. Universal cranial ultrasound screening in preterm infants with gestational age 33-36 weeks. A retrospective analysis of 724 newborns. Pediatr. Neurol. 2014;51:790–4. Ballardini E, Tarocco A, Baldan A, et al. Universal cranial ultrasound screening in preterm infants with gestational age 33-36 weeks. A retrospective analysis of 724 newborns. Pediatr. Neurol. 2014;51:790–4.
10.
go back to reference Ballardini E, Tarocco A, Rosignoli C, et al. Universal head ultrasound screening in full-term neonates: a retrospective analysis of 6771 infants. Pediatr Neurol. 2017;71:14–7.CrossRef Ballardini E, Tarocco A, Rosignoli C, et al. Universal head ultrasound screening in full-term neonates: a retrospective analysis of 6771 infants. Pediatr Neurol. 2017;71:14–7.CrossRef
11.
go back to reference Wang LW, Huang CC, Yeh TF. Major brain lesions detected on sonographic screening of apparently normal term neonates. Neuroradiology. 2004;46:368–73.CrossRef Wang LW, Huang CC, Yeh TF. Major brain lesions detected on sonographic screening of apparently normal term neonates. Neuroradiology. 2004;46:368–73.CrossRef
12.
go back to reference Gover A, Bader D, Weinger-Abend M, et al. Head ultrasonograhy as a screening tool in apparently healthy asymptomatic term neonates. Isr Med Assoc J. 2011 Jan;13(1):9–13.PubMed Gover A, Bader D, Weinger-Abend M, et al. Head ultrasonograhy as a screening tool in apparently healthy asymptomatic term neonates. Isr Med Assoc J. 2011 Jan;13(1):9–13.PubMed
13.
go back to reference Kinney HC. The near-term (late preterm) human brain and risk for periventricular leukomalacia: a review. Semin Perinatol. 2006;30:81–8.CrossRef Kinney HC. The near-term (late preterm) human brain and risk for periventricular leukomalacia: a review. Semin Perinatol. 2006;30:81–8.CrossRef
14.
go back to reference Volpe JJ, editor. Neurology of the newborn. 5th ed. Philadelphia: Saunders/Elsevier; 2008. Volpe JJ, editor. Neurology of the newborn. 5th ed. Philadelphia: Saunders/Elsevier; 2008.
15.
go back to reference Imamura T, Ariga H, Kaneko M, et al. Neurodevelopmental outcomes of children with periventricular leukomalacia. Pediatrics and neonatology. 2013;54:367–72.CrossRef Imamura T, Ariga H, Kaneko M, et al. Neurodevelopmental outcomes of children with periventricular leukomalacia. Pediatrics and neonatology. 2013;54:367–72.CrossRef
16.
go back to reference Volpe P, Paladini D, Resta M, et al. Characteristics, associations and outcome of partial agenesis of the corpus callosum in the fetus. Ultrasound Obstet Gynecol. 2006;27:509–16.CrossRef Volpe P, Paladini D, Resta M, et al. Characteristics, associations and outcome of partial agenesis of the corpus callosum in the fetus. Ultrasound Obstet Gynecol. 2006;27:509–16.CrossRef
18.
go back to reference Ozyüncü O, Yazıcıoğlu A, Turğal M. Antenatal diagnosis and outcome of agenesis of corpus callosum: a retrospective review of 33 cases. J Turk Ger Gynecol Assoc. 2014;15:18–21.CrossRef Ozyüncü O, Yazıcıoğlu A, Turğal M. Antenatal diagnosis and outcome of agenesis of corpus callosum: a retrospective review of 33 cases. J Turk Ger Gynecol Assoc. 2014;15:18–21.CrossRef
19.
go back to reference Moutard M-L, Kieffer V, Feingold J, et al. Agenesis of corpus callosum: prenatal diagnosis and prognosis. Childs Nerv Syst. 2003;19:471–6.CrossRef Moutard M-L, Kieffer V, Feingold J, et al. Agenesis of corpus callosum: prenatal diagnosis and prognosis. Childs Nerv Syst. 2003;19:471–6.CrossRef
20.
go back to reference Moutard M-L, Kieffer V, Feingold J, et al. Isolated corpus callosum agenesis: a ten-year follow-up after prenatal diagnosis (how are the children without corpus callosum at 10 years of age?). Prenat Diagn. 2012;32:277–83.CrossRef Moutard M-L, Kieffer V, Feingold J, et al. Isolated corpus callosum agenesis: a ten-year follow-up after prenatal diagnosis (how are the children without corpus callosum at 10 years of age?). Prenat Diagn. 2012;32:277–83.CrossRef
21.
go back to reference Brouwer AJ, Groenendaal F, Benders MJNL, et al. Early and late complications of germinal matrix-intraventricular haemorrhage in the preterm infant: what is new? Neonatology. 2014;106:296–303.CrossRef Brouwer AJ, Groenendaal F, Benders MJNL, et al. Early and late complications of germinal matrix-intraventricular haemorrhage in the preterm infant: what is new? Neonatology. 2014;106:296–303.CrossRef
22.
go back to reference Mukerji A, Shah V, Shah PS. Periventricular/Intraventricular hemorrhage and neurodevelopmental outcomes: a meta-analysis. Pediatrics. 2015;136:1132–43.CrossRef Mukerji A, Shah V, Shah PS. Periventricular/Intraventricular hemorrhage and neurodevelopmental outcomes: a meta-analysis. Pediatrics. 2015;136:1132–43.CrossRef
Metadata
Title
Analyses of pathological cranial ultrasound findings in neonates that fall outside recent indication guidelines: results of a population-based birth cohort: survey of neonates in Pommerania (SNiP-study)
Authors
Judith Weise
Matthias Heckmann
Hagen Bahlmann
Till Ittermann
Heike Allenberg
Grzegorz Domanski
Anja Erika Lange
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2019
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-019-1843-6

Other articles of this Issue 1/2019

BMC Pediatrics 1/2019 Go to the issue