Skip to main content
Top
Published in: BMC Sports Science, Medicine and Rehabilitation 1/2011

Open Access 01-12-2011 | Research

Ultrasound measurement of the size of the anterior tibial muscle group: the effect of exercise and leg dominance

Authors: Karen McCreesh, Sinead Egan

Published in: BMC Sports Science, Medicine and Rehabilitation | Issue 1/2011

Login to get access

Abstract

Background

Knowledge of normal muscle characteristics is crucial in planning rehabilitation programmes for injured athletes. There is a high incidence of ankle and anterior tibial symptoms in football players, however little is known about the effect of limb dominance on the anterior tibial muscle group (ATMG). The purpose of this study was to assess the effect of limb dominance and sports-specific activity on ATMG thickness in Gaelic footballers and non-football playing controls using ultrasound measurements, and to compare results from transverse and longitudinal scans.

Methods

Bilateral ultrasound scans were taken to assess the ATMG size in 10 Gaelic footballers and 10 sedentary controls (age range 18-25 yrs), using a previously published protocol. Both transverse and longitudinal images were taken. Muscle thickness measurements were carried out blind to group and side of dominance, using the Image-J programme.

Results

Muscle thickness on the dominant leg was significantly greater than the non-dominant leg in the footballers with a mean difference of 7.3%, while there was no significant dominance effect in the controls (p < 0.05). There was no significant difference between the measurements from transverse or longitudinal scans.

Conclusions

A significant dominance effect exists in ATMG size in this group of Gaelic footballers, likely attributable to the kicking action involved in the sport. This should be taken into account when rehabilitating footballers with anterior tibial pathology. Ultrasound is a reliable tool to measure ATMG thickness, and measurement may be taken in transverse or longitudinal section.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cromwell F, Walsh J, Gormley J: A pilot study examining injuries in elite Gaelic footballers. Br J Sports Med. 2000, 34: 104-108. 10.1136/bjsm.34.2.104.CrossRefPubMedPubMedCentral Cromwell F, Walsh J, Gormley J: A pilot study examining injuries in elite Gaelic footballers. Br J Sports Med. 2000, 34: 104-108. 10.1136/bjsm.34.2.104.CrossRefPubMedPubMedCentral
2.
go back to reference Wilson F, Caffrey S, King E, Casey K, Gissane C: A 6-month prospective study of injury in Gaelic football. Br J Sports Med. 2007, 41: 317-321. 10.1136/bjsm.2006.033167.CrossRefPubMed Wilson F, Caffrey S, King E, Casey K, Gissane C: A 6-month prospective study of injury in Gaelic football. Br J Sports Med. 2007, 41: 317-321. 10.1136/bjsm.2006.033167.CrossRefPubMed
3.
go back to reference Reardon K, Galea M, Dennett X, Choong P, Byrne E: Quadriceps muscle wasting persists 5 months after total hip arthroplasty for osteoarthritis of the hip: a pilot study. Int Med Journal. 2001, 31: 7-14. 10.1046/j.1445-5994.2001.00007.x.CrossRef Reardon K, Galea M, Dennett X, Choong P, Byrne E: Quadriceps muscle wasting persists 5 months after total hip arthroplasty for osteoarthritis of the hip: a pilot study. Int Med Journal. 2001, 31: 7-14. 10.1046/j.1445-5994.2001.00007.x.CrossRef
4.
go back to reference Bleakney R, Maffulli N: Ultrasound changes to intramuscular architecture of the quadriceps following intramedullary nailing. J Sports Med Phys Fit. 2002, 42: 120-125. Bleakney R, Maffulli N: Ultrasound changes to intramuscular architecture of the quadriceps following intramedullary nailing. J Sports Med Phys Fit. 2002, 42: 120-125.
5.
go back to reference Perkin HM, Bond EA, Thompson J, Woods EC, Smith C: Real-time ultrasound: an objective measure of skeletal muscle. Phys Ther Rev. 2003, 8: 99-108. 10.1179/108331903225002506.CrossRef Perkin HM, Bond EA, Thompson J, Woods EC, Smith C: Real-time ultrasound: an objective measure of skeletal muscle. Phys Ther Rev. 2003, 8: 99-108. 10.1179/108331903225002506.CrossRef
6.
go back to reference Pretorius A, Keating JL: Validity of real-time ultrasound for measuring skeletal muscle size. Phys Ther Rev. 2008, 13: 415-26. 10.1179/174328808X356447.CrossRef Pretorius A, Keating JL: Validity of real-time ultrasound for measuring skeletal muscle size. Phys Ther Rev. 2008, 13: 415-26. 10.1179/174328808X356447.CrossRef
7.
go back to reference Martinson H, Stokes MJ: Measurement of anterior tibial muscle size using real-time ultrasound imaging. Eur J App Physiol. 1991, 63: 250-254. 10.1007/BF00233856.CrossRef Martinson H, Stokes MJ: Measurement of anterior tibial muscle size using real-time ultrasound imaging. Eur J App Physiol. 1991, 63: 250-254. 10.1007/BF00233856.CrossRef
8.
go back to reference O'Sullivan K, O'Ceallaigh B, O'Connell K, Shafat A: The relationship between previous hamstring injury and the concentric isokinetic knee muscle strength of Irish gaelic footballers. BMC Musculoskelet Disord. 2008, 9: 30-10.1186/1471-2474-9-30.CrossRefPubMedPubMedCentral O'Sullivan K, O'Ceallaigh B, O'Connell K, Shafat A: The relationship between previous hamstring injury and the concentric isokinetic knee muscle strength of Irish gaelic footballers. BMC Musculoskelet Disord. 2008, 9: 30-10.1186/1471-2474-9-30.CrossRefPubMedPubMedCentral
9.
go back to reference Kelly S, Stokes M: Symmetry of anterior tibial muscle size measured by diagnostic ultrasound imaging in young females. Clin Rehabil. 1993, 7: 222-228. 10.1177/026921559300700308.CrossRef Kelly S, Stokes M: Symmetry of anterior tibial muscle size measured by diagnostic ultrasound imaging in young females. Clin Rehabil. 1993, 7: 222-228. 10.1177/026921559300700308.CrossRef
10.
go back to reference Kearns CF, Isokawa M, Abe T: Architectural characteristics of dominant leg muscles in junior soccer players. Eur J Appl Physiol. 2001, 85: 240-243. 10.1007/s004210100468.CrossRefPubMed Kearns CF, Isokawa M, Abe T: Architectural characteristics of dominant leg muscles in junior soccer players. Eur J Appl Physiol. 2001, 85: 240-243. 10.1007/s004210100468.CrossRefPubMed
11.
go back to reference Whittaker JL, Elliot JM, Cook K, Langevin HM, Dahl HD, Stokes M, Teyhen D: Rehabilitative ultrasound imaging: understanding the technology and its applications. JOSPT. 2007, 37 (8): 434-449.CrossRefPubMed Whittaker JL, Elliot JM, Cook K, Langevin HM, Dahl HD, Stokes M, Teyhen D: Rehabilitative ultrasound imaging: understanding the technology and its applications. JOSPT. 2007, 37 (8): 434-449.CrossRefPubMed
12.
go back to reference Wernbom M, Augustsson J, Thomeé R: The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med. 2007, 37 (3): 225-264. 10.2165/00007256-200737030-00004.CrossRefPubMed Wernbom M, Augustsson J, Thomeé R: The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med. 2007, 37 (3): 225-264. 10.2165/00007256-200737030-00004.CrossRefPubMed
13.
go back to reference Hennrikus WL, Kasser JR, Rand F, Millis MB, Richards KM: The function of the quadriceps muscle after a fracture of the femur in patients who are less than seventeen years old. J Bone Joint Surg. 1993, 75: 508-13.PubMed Hennrikus WL, Kasser JR, Rand F, Millis MB, Richards KM: The function of the quadriceps muscle after a fracture of the femur in patients who are less than seventeen years old. J Bone Joint Surg. 1993, 75: 508-13.PubMed
14.
go back to reference Hug F, Marqueste T, Le Fur Y, Cozzone PJ, Grélot L, Bendahan D: Selective training-induced thigh muscle hypertrophy in professional road cyclists. Euro J Appl Physiol. 2006, 97: 591-7. 10.1007/s00421-006-0218-5.CrossRef Hug F, Marqueste T, Le Fur Y, Cozzone PJ, Grélot L, Bendahan D: Selective training-induced thigh muscle hypertrophy in professional road cyclists. Euro J Appl Physiol. 2006, 97: 591-7. 10.1007/s00421-006-0218-5.CrossRef
15.
go back to reference Jakobsson F, Borg K, Edstrom L: Fibre-type composition, structure and cytoskeletal protein location of fibres in anterior tibial muscle. Comparison between young adults and physically active, aged humans. Acta Neuropathologica. 1990, 80 (5): 459-468. 10.1007/BF00294604.CrossRefPubMed Jakobsson F, Borg K, Edstrom L: Fibre-type composition, structure and cytoskeletal protein location of fibres in anterior tibial muscle. Comparison between young adults and physically active, aged humans. Acta Neuropathologica. 1990, 80 (5): 459-468. 10.1007/BF00294604.CrossRefPubMed
16.
go back to reference Fukunaga T, Miyatani M, Iyatani M, Tachi M, Kouzaki M, Kawakami Y, Kanehisa H: Muscle volume is a major determinant of joint torque in humans. Acta Physiologica Scandinavica. 2001, 172: 249-255. 10.1046/j.1365-201x.2001.00867.x.CrossRefPubMed Fukunaga T, Miyatani M, Iyatani M, Tachi M, Kouzaki M, Kawakami Y, Kanehisa H: Muscle volume is a major determinant of joint torque in humans. Acta Physiologica Scandinavica. 2001, 172: 249-255. 10.1046/j.1365-201x.2001.00867.x.CrossRefPubMed
17.
go back to reference Williams GN, Buchanan TS, Barrance PJ, Axe MJ, Snyder-Mackler L: Quadriceps weakness, atrophy, and activation failure in predicted non-copers after anterior cruciate ligament injury. Am J Sports Med. 2005, 33 (3): 402-4. 10.1177/0363546504268042.CrossRefPubMed Williams GN, Buchanan TS, Barrance PJ, Axe MJ, Snyder-Mackler L: Quadriceps weakness, atrophy, and activation failure in predicted non-copers after anterior cruciate ligament injury. Am J Sports Med. 2005, 33 (3): 402-4. 10.1177/0363546504268042.CrossRefPubMed
Metadata
Title
Ultrasound measurement of the size of the anterior tibial muscle group: the effect of exercise and leg dominance
Authors
Karen McCreesh
Sinead Egan
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Sports Science, Medicine and Rehabilitation / Issue 1/2011
Electronic ISSN: 2052-1847
DOI
https://doi.org/10.1186/1758-2555-3-18

Other articles of this Issue 1/2011

BMC Sports Science, Medicine and Rehabilitation 1/2011 Go to the issue