Skip to main content
Top
Published in: CardioVascular and Interventional Radiology 12/2017

01-12-2017 | Clinical Investigation

Ultrasound-Guided Radiofrequency Ablation Using a New Electrode with an Electromagnetic Position Sensor for Hepatic Tumors Difficult to Place an Electrode: A Preliminary Clinical Study

Authors: Tae Wook Kang, Min Woo Lee, Kyoung Doo Song, Hyunchul Rhim, Hyo Keun Lim, Wonseok Kang, Kyunga Kim

Published in: CardioVascular and Interventional Radiology | Issue 12/2017

Login to get access

Abstract

Purpose

To evaluate whether a new electrode embedded with an electromagnetic position sensor (EMPS) improves the technical feasibility of percutaneous radiofrequency ablation (RFA) in patients with hepatic tumors difficult to place an electrode under ultrasonography (US) guidance and to assess short-term therapeutic efficacy and safety.

Materials and Methods

This prospective study was approved by the institutional review board, and written informed consent was obtained from all patients. Between January 2015 and December 2016, 10 patients (7 men and 3 women; age range 52–75 years) with a single hepatic tumor (median 1.4 cm; range 1.1–1.8 cm) difficult to place an electrode under US guidance were enrolled. The technical feasibility of targeting and overlapping ablation during the RFA procedure was graded using a four-point scale and analyzed using the Wilcoxon signed rank test according to the use of EMPS. In addition, the rates of technical success, local tumor progression (LTP), and major complications were assessed.

Results

The use of the new RF electrode with EMPS significantly improved the technical feasibility of targeting and overlapping ablation (p = 0.002 and p = 0.003, respectively). After treatment, the technical success rate was 100%. LTP was not found in any patient during the follow-up period (median 8 months; range 4–22 months). No major procedure-related complications occurred.

Conclusions

The technical feasibility of percutaneous RFA improves with the use of this RF electrode embedded with an EMPS. Short-term therapeutic efficacy and safety after RFA using the electrode were promising in patients with hepatic tumors difficult to place an electrode under US guidance.
Appendix
Available only for authorised users
Literature
2.
go back to reference Shady W, Petre EN, Gonen M, et al. Percutaneous radiofrequency ablation of colorectal cancer liver metastases: factors affecting outcomes—a 10-year experience at a single center. Radiology. 2016;278(2):601–11.CrossRefPubMed Shady W, Petre EN, Gonen M, et al. Percutaneous radiofrequency ablation of colorectal cancer liver metastases: factors affecting outcomes—a 10-year experience at a single center. Radiology. 2016;278(2):601–11.CrossRefPubMed
4.
go back to reference Kim J, Yoon CJ, Seong NJ, Jeong SH, Kim JW. Fluoroscopy-guided radiofrequency ablation for small hepatocellular carcinoma: a retrospective comparison with ultrasound-guided ablation. Clin Radiol. 2015;70(9):1009–15.CrossRefPubMed Kim J, Yoon CJ, Seong NJ, Jeong SH, Kim JW. Fluoroscopy-guided radiofrequency ablation for small hepatocellular carcinoma: a retrospective comparison with ultrasound-guided ablation. Clin Radiol. 2015;70(9):1009–15.CrossRefPubMed
5.
go back to reference Rempp H, Unterberg J, Hoffmann R, et al. Therapy monitoring of magnetic resonance-guided radiofrequency ablation using T1- and T2-weighted sequences at 1.5 T: reliability of estimated ablation zones. Invest Radiol. 2013;48(6):429–36.CrossRefPubMed Rempp H, Unterberg J, Hoffmann R, et al. Therapy monitoring of magnetic resonance-guided radiofrequency ablation using T1- and T2-weighted sequences at 1.5 T: reliability of estimated ablation zones. Invest Radiol. 2013;48(6):429–36.CrossRefPubMed
6.
go back to reference Mulier S, Ni Y, Jamart J, Ruers T, Marchal G, Michel L. Local recurrence after hepatic radiofrequency coagulation: multivariate meta-analysis and review of contributing factors. Ann Surg. 2005;242(2):158–71.CrossRefPubMedPubMedCentral Mulier S, Ni Y, Jamart J, Ruers T, Marchal G, Michel L. Local recurrence after hepatic radiofrequency coagulation: multivariate meta-analysis and review of contributing factors. Ann Surg. 2005;242(2):158–71.CrossRefPubMedPubMedCentral
7.
go back to reference Kim YS, Lee WJ, Rhim H, Lim HK, Choi D, Lee JY. The minimal ablative margin of radiofrequency ablation of hepatocellular carcinoma (>2 and <5 cm) needed to prevent local tumor progression: 3D quantitative assessment using CT image fusion. AJR Am J Roentgenol. 2010;195(3):758–65.CrossRefPubMed Kim YS, Lee WJ, Rhim H, Lim HK, Choi D, Lee JY. The minimal ablative margin of radiofrequency ablation of hepatocellular carcinoma (>2 and <5 cm) needed to prevent local tumor progression: 3D quantitative assessment using CT image fusion. AJR Am J Roentgenol. 2010;195(3):758–65.CrossRefPubMed
8.
go back to reference Minami Y, Chung H, Kudo M, et al. Radiofrequency ablation of hepatocellular carcinoma: value of virtual CT sonography with magnetic navigation. AJR Am J Roentgenol. 2008;190(6):W335–41.CrossRefPubMed Minami Y, Chung H, Kudo M, et al. Radiofrequency ablation of hepatocellular carcinoma: value of virtual CT sonography with magnetic navigation. AJR Am J Roentgenol. 2008;190(6):W335–41.CrossRefPubMed
9.
go back to reference Song KD, Lee MW, Rhim H, Cha DI, Chong Y, Lim HK. Fusion imaging-guided radiofrequency ablation for hepatocellular carcinomas not visible on conventional ultrasound. AJR Am J Roentgenol. 2013;201(5):1141–7.CrossRefPubMed Song KD, Lee MW, Rhim H, Cha DI, Chong Y, Lim HK. Fusion imaging-guided radiofrequency ablation for hepatocellular carcinomas not visible on conventional ultrasound. AJR Am J Roentgenol. 2013;201(5):1141–7.CrossRefPubMed
10.
go back to reference Appelbaum L, Mahgerefteh SY, Sosna J, Goldberg SN. Image-guided fusion and navigation: applications in tumor ablation. Tech Vasc Interv Radiol. 2013;16(4):287–95.CrossRefPubMed Appelbaum L, Mahgerefteh SY, Sosna J, Goldberg SN. Image-guided fusion and navigation: applications in tumor ablation. Tech Vasc Interv Radiol. 2013;16(4):287–95.CrossRefPubMed
11.
go back to reference Min JH, Lim HK, Lim S, et al. Radiofrequency ablation of very-early-stage hepatocellular carcinoma inconspicuous on fusion imaging with B-mode US: value of fusion imaging with contrast-enhanced US. Clin Mol Hepatol. 2014;20(1):61–70.CrossRefPubMedPubMedCentral Min JH, Lim HK, Lim S, et al. Radiofrequency ablation of very-early-stage hepatocellular carcinoma inconspicuous on fusion imaging with B-mode US: value of fusion imaging with contrast-enhanced US. Clin Mol Hepatol. 2014;20(1):61–70.CrossRefPubMedPubMedCentral
12.
go back to reference Hakime A, Deschamps F, De Carvalho EG, Barah A, Auperin A, De Baere T. Electromagnetic-tracked biopsy under ultrasound guidance: preliminary results. Cardiovasc Interv Radiol. 2012;35(4):898–905.CrossRef Hakime A, Deschamps F, De Carvalho EG, Barah A, Auperin A, De Baere T. Electromagnetic-tracked biopsy under ultrasound guidance: preliminary results. Cardiovasc Interv Radiol. 2012;35(4):898–905.CrossRef
13.
go back to reference Jung EM, Friedrich C, Hoffstetter P, et al. Volume navigation with contrast enhanced ultrasound and image fusion for percutaneous interventions: first results. PLoS ONE. 2012;7(3):e33956.CrossRefPubMedPubMedCentral Jung EM, Friedrich C, Hoffstetter P, et al. Volume navigation with contrast enhanced ultrasound and image fusion for percutaneous interventions: first results. PLoS ONE. 2012;7(3):e33956.CrossRefPubMedPubMedCentral
14.
go back to reference Tomonari A, Tsuji K, Yamazaki H, et al. Feasibility of the virtual needle tracking system for percutaneous radiofrequency ablation of hepatocellular carcinoma. Hepatol Res. 2013;43(12):1352–5.CrossRefPubMed Tomonari A, Tsuji K, Yamazaki H, et al. Feasibility of the virtual needle tracking system for percutaneous radiofrequency ablation of hepatocellular carcinoma. Hepatol Res. 2013;43(12):1352–5.CrossRefPubMed
15.
go back to reference Kang TW, Lee MW, Choi SH, et al. A novel electrode with electromagnetic tip tracking in ultrasonography-guided radiofrequency ablation: a phantom, ex vivo, and in vivo experimental study. Invest Radiol. 2015;50(2):81–7.CrossRefPubMed Kang TW, Lee MW, Choi SH, et al. A novel electrode with electromagnetic tip tracking in ultrasonography-guided radiofrequency ablation: a phantom, ex vivo, and in vivo experimental study. Invest Radiol. 2015;50(2):81–7.CrossRefPubMed
16.
go back to reference Ahmed M, Solbiati L, Brace CL, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria—a 10-year update. Radiology. 2014;273(1):241–60.CrossRefPubMedPubMedCentral Ahmed M, Solbiati L, Brace CL, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria—a 10-year update. Radiology. 2014;273(1):241–60.CrossRefPubMedPubMedCentral
17.
go back to reference Rhim H, Choi D, Kim YS, Lim HK, Choe BK. Ultrasonography-guided percutaneous radiofrequency ablation of hepatocellular carcinomas: a feasibility scoring system for planning sonography. Eur J Radiol. 2010;75(2):253–8.CrossRefPubMed Rhim H, Choi D, Kim YS, Lim HK, Choe BK. Ultrasonography-guided percutaneous radiofrequency ablation of hepatocellular carcinomas: a feasibility scoring system for planning sonography. Eur J Radiol. 2010;75(2):253–8.CrossRefPubMed
18.
go back to reference Lee MW, Rhim H, Cha DI, Kim YJ, Lim HK. Planning US for percutaneous radiofrequency ablation of small hepatocellular carcinomas (1–3 cm): value of fusion imaging with conventional US and CT/MR images. J Vasc Interv Radiol. 2013;24(7):958–65.CrossRefPubMed Lee MW, Rhim H, Cha DI, Kim YJ, Lim HK. Planning US for percutaneous radiofrequency ablation of small hepatocellular carcinomas (1–3 cm): value of fusion imaging with conventional US and CT/MR images. J Vasc Interv Radiol. 2013;24(7):958–65.CrossRefPubMed
19.
go back to reference Kang TW, Lim HK, Lee MW, et al. Long-term therapeutic outcomes of radiofrequency ablation for subcapsular versus nonsubcapsular hepatocellular carcinoma: a propensity score matched study. Radiology. 2016;280(1):300–12.CrossRefPubMed Kang TW, Lim HK, Lee MW, et al. Long-term therapeutic outcomes of radiofrequency ablation for subcapsular versus nonsubcapsular hepatocellular carcinoma: a propensity score matched study. Radiology. 2016;280(1):300–12.CrossRefPubMed
20.
go back to reference Kang TW, Lim HK, Lee MW, Kim YS, Choi D, Rhim H. Perivascular versus nonperivascular small HCC treated with percutaneous RF ablation: retrospective comparison of long-term therapeutic outcomes. Radiology. 2014;270(3):888–99.CrossRefPubMed Kang TW, Lim HK, Lee MW, Kim YS, Choi D, Rhim H. Perivascular versus nonperivascular small HCC treated with percutaneous RF ablation: retrospective comparison of long-term therapeutic outcomes. Radiology. 2014;270(3):888–99.CrossRefPubMed
21.
go back to reference Kang TW, Lim HK, Lee MW, Kim YS, Choi D, Rhim H. First-line radiofrequency ablation with or without artificial ascites for hepatocellular carcinomas in a subcapsular location: local control rate and risk of peritoneal seeding at long-term follow-up. Clin Radiol. 2013;68(12):e641–51.CrossRefPubMed Kang TW, Lim HK, Lee MW, Kim YS, Choi D, Rhim H. First-line radiofrequency ablation with or without artificial ascites for hepatocellular carcinomas in a subcapsular location: local control rate and risk of peritoneal seeding at long-term follow-up. Clin Radiol. 2013;68(12):e641–51.CrossRefPubMed
22.
go back to reference Venkatesan AM, Kadoury S, Abi-Jaoudeh N, et al. Real-time FDG PET guidance during biopsies and radiofrequency ablation using multimodality fusion with electromagnetic navigation. Radiology. 2011;260(3):848–56.CrossRefPubMedPubMedCentral Venkatesan AM, Kadoury S, Abi-Jaoudeh N, et al. Real-time FDG PET guidance during biopsies and radiofrequency ablation using multimodality fusion with electromagnetic navigation. Radiology. 2011;260(3):848–56.CrossRefPubMedPubMedCentral
23.
go back to reference Krucker J, Xu S, Venkatesan A, et al. Clinical utility of real-time fusion guidance for biopsy and ablation. J Vasc Interv Radiol. 2011;22(4):515–24.CrossRefPubMedPubMedCentral Krucker J, Xu S, Venkatesan A, et al. Clinical utility of real-time fusion guidance for biopsy and ablation. J Vasc Interv Radiol. 2011;22(4):515–24.CrossRefPubMedPubMedCentral
24.
go back to reference Nakazawa T, Kokubu S, Shibuya A, et al. Radiofrequency ablation of hepatocellular carcinoma: correlation between local tumor progression after ablation and ablative margin. AJR Am J Roentgenol. 2007;188(2):480–8.CrossRefPubMed Nakazawa T, Kokubu S, Shibuya A, et al. Radiofrequency ablation of hepatocellular carcinoma: correlation between local tumor progression after ablation and ablative margin. AJR Am J Roentgenol. 2007;188(2):480–8.CrossRefPubMed
25.
go back to reference Hakime A, Barah A, Deschamps F, et al. Prospective comparison of freehand and electromagnetic needle tracking for US-guided percutaneous liver biopsy. J Vasc Interv Radiol. 2013;24(11):1682–9.CrossRefPubMed Hakime A, Barah A, Deschamps F, et al. Prospective comparison of freehand and electromagnetic needle tracking for US-guided percutaneous liver biopsy. J Vasc Interv Radiol. 2013;24(11):1682–9.CrossRefPubMed
26.
go back to reference Dodd GD 3rd, Frank MS, Aribandi M, Chopra S, Chintapalli KN. Radiofrequency thermal ablation: computer analysis of the size of the thermal injury created by overlapping ablations. AJR Am J Roentgenol. 2001;177(4):777–82.CrossRefPubMed Dodd GD 3rd, Frank MS, Aribandi M, Chopra S, Chintapalli KN. Radiofrequency thermal ablation: computer analysis of the size of the thermal injury created by overlapping ablations. AJR Am J Roentgenol. 2001;177(4):777–82.CrossRefPubMed
Metadata
Title
Ultrasound-Guided Radiofrequency Ablation Using a New Electrode with an Electromagnetic Position Sensor for Hepatic Tumors Difficult to Place an Electrode: A Preliminary Clinical Study
Authors
Tae Wook Kang
Min Woo Lee
Kyoung Doo Song
Hyunchul Rhim
Hyo Keun Lim
Wonseok Kang
Kyunga Kim
Publication date
01-12-2017
Publisher
Springer US
Published in
CardioVascular and Interventional Radiology / Issue 12/2017
Print ISSN: 0174-1551
Electronic ISSN: 1432-086X
DOI
https://doi.org/10.1007/s00270-017-1751-9

Other articles of this Issue 12/2017

CardioVascular and Interventional Radiology 12/2017 Go to the issue