Skip to main content
Top
Published in: Molecular Cancer 1/2011

Open Access 01-12-2011 | Research

Ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) is a potential tumour suppressor in prostate cancer and is frequently silenced by promoter methylation

Authors: Ramesh Ummanni, Edgar Jost, Melanie Braig, Frithjof Lohmann, Frederike Mundt, Christine Barett, Thorsten Schlomm, Guido Sauter, Tina Senff, Carsten Bokemeyer, Holger Sültmann, Catherine Meyer-Schwesinger, Tim H Brümmendorf, Stefan Balabanov

Published in: Molecular Cancer | Issue 1/2011

Login to get access

Abstract

Background

We have previously reported significant downregulation of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) in prostate cancer (PCa) compared to the surrounding benign tissue. UCHL1 plays an important role in ubiquitin system and different cellular processes such as cell proliferation and differentiation. We now show that the underlying mechanism of UCHL1 downregulation in PCa is linked to its promoter hypermethylation. Furthermore, we present evidences that UCHL1 expression can affect the behavior of prostate cancer cells in different ways.

Results

Methylation specific PCR analysis results showed a highly methylated promoter region for UCHL1 in 90% (18/20) of tumor tissue compared to 15% (3/20) of normal tissues from PCa patients. Pyrosequencing results confirmed a mean methylation of 41.4% in PCa whereas only 8.6% in normal tissues. To conduct functional analysis of UCHL1 in PCa, UCHL1 is overexpressed in LNCaP cells whose UCHL1 expression is normally suppressed by promoter methylation and found that UCHL1 has the ability to decrease the rate of cell proliferation and suppresses anchorage-independent growth of these cells. In further analysis, we found evidence that exogenous expression of UCHL1 suppress LNCaP cells growth probably via p53-mediated inhibition of Akt/PKB phosphorylation and also via accumulation of p27kip1 a cyclin dependant kinase inhibitor of cell cycle regulating proteins. Notably, we also observed that exogenous expression of UCHL1 induced a senescent phenotype that was detected by using the SA-ß-gal assay and might be due to increased p14ARF, p53, p27kip1 and decreased MDM2.

Conclusion

From these results, we propose that UCHL1 downregulation via promoter hypermethylation plays an important role in various molecular aspects of PCa biology, such as morphological diversification and regulation of proliferation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Landis SH, Murray T, Bolden S, Wingo PA: Cancer statistics, 1999. CA Cancer J Clin. 1999, 49: 8-31. 1, 10.3322/canjclin.49.1.8CrossRefPubMed Landis SH, Murray T, Bolden S, Wingo PA: Cancer statistics, 1999. CA Cancer J Clin. 1999, 49: 8-31. 1, 10.3322/canjclin.49.1.8CrossRefPubMed
2.
go back to reference Hsing AW, Chokkalingam AP: Prostate cancer epidemiology. Front Biosci. 2006, 11: 1388-1413. 10.2741/1891CrossRefPubMed Hsing AW, Chokkalingam AP: Prostate cancer epidemiology. Front Biosci. 2006, 11: 1388-1413. 10.2741/1891CrossRefPubMed
3.
go back to reference Ummanni R, Mundt F, Pospisil H, Venz S, Scharf C, Barett C, Falth M, Kollermann J, Walther R, Schlomm T: Identification of Clinically Relevant Protein Targets in Prostate Cancer with 2D-DIGE Coupled Mass Spectrometry and Systems Biology Network Platform. PLoS One. 2011, 6: e16833- 10.1371/journal.pone.0016833PubMedCentralCrossRefPubMed Ummanni R, Mundt F, Pospisil H, Venz S, Scharf C, Barett C, Falth M, Kollermann J, Walther R, Schlomm T: Identification of Clinically Relevant Protein Targets in Prostate Cancer with 2D-DIGE Coupled Mass Spectrometry and Systems Biology Network Platform. PLoS One. 2011, 6: e16833- 10.1371/journal.pone.0016833PubMedCentralCrossRefPubMed
4.
go back to reference Welchman RL, Gordon C, Mayer RJ: Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol. 2005, 6: 599-609. 10.1038/nrm1700CrossRefPubMed Welchman RL, Gordon C, Mayer RJ: Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol. 2005, 6: 599-609. 10.1038/nrm1700CrossRefPubMed
5.
go back to reference Reyes-Turcu FE, Ventii KH, Wilkinson KD: Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem. 2009, 78: 363-397. 10.1146/annurev.biochem.78.082307.091526CrossRefPubMed Reyes-Turcu FE, Ventii KH, Wilkinson KD: Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem. 2009, 78: 363-397. 10.1146/annurev.biochem.78.082307.091526CrossRefPubMed
6.
go back to reference Komander D, Clague MJ, Urbe S: Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 2009, 10: 550-563. 10.1038/nrm2731CrossRefPubMed Komander D, Clague MJ, Urbe S: Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 2009, 10: 550-563. 10.1038/nrm2731CrossRefPubMed
7.
go back to reference Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R: A genomic and functional inventory of deubiquitinating enzymes. Cell. 2005, 123: 773-786. 10.1016/j.cell.2005.11.007CrossRefPubMed Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R: A genomic and functional inventory of deubiquitinating enzymes. Cell. 2005, 123: 773-786. 10.1016/j.cell.2005.11.007CrossRefPubMed
8.
go back to reference Tezel E, Hibi K, Nagasaka T, Nakao A: PGP9.5 as a prognostic factor in pancreatic cancer. Clin Cancer Res. 2000, 6: 4764-4767.PubMed Tezel E, Hibi K, Nagasaka T, Nakao A: PGP9.5 as a prognostic factor in pancreatic cancer. Clin Cancer Res. 2000, 6: 4764-4767.PubMed
9.
go back to reference Hibi K, Westra WH, Borges M, Goodman S, Sidransky D, Jen J: PGP9.5 as a candidate tumor marker for non-small-cell lung cancer. Am J Pathol. 1999, 155: 711-715. 10.1016/S0002-9440(10)65169-3PubMedCentralCrossRefPubMed Hibi K, Westra WH, Borges M, Goodman S, Sidransky D, Jen J: PGP9.5 as a candidate tumor marker for non-small-cell lung cancer. Am J Pathol. 1999, 155: 711-715. 10.1016/S0002-9440(10)65169-3PubMedCentralCrossRefPubMed
10.
go back to reference Yamazaki T, Hibi K, Takase T, Tezel E, Nakayama H, Kasai Y, Ito K, Akiyama S, Nagasaka T, Nakao A: PGP9.5 as a marker for invasive colorectal cancer. Clin Cancer Res. 2002, 8: 192-195.PubMed Yamazaki T, Hibi K, Takase T, Tezel E, Nakayama H, Kasai Y, Ito K, Akiyama S, Nagasaka T, Nakao A: PGP9.5 as a marker for invasive colorectal cancer. Clin Cancer Res. 2002, 8: 192-195.PubMed
11.
go back to reference Liu X, Zeng B, Ma J, Wan C: Comparative proteomic analysis of osteosarcoma cell and human primary cultured osteoblastic cell. Cancer Invest. 2009, 27: 345-352. 10.1080/07357900802438577CrossRefPubMed Liu X, Zeng B, Ma J, Wan C: Comparative proteomic analysis of osteosarcoma cell and human primary cultured osteoblastic cell. Cancer Invest. 2009, 27: 345-352. 10.1080/07357900802438577CrossRefPubMed
12.
go back to reference Takase T, Hibi K, Yamazaki T, Nakayama H, Taguchi M, Kasai Y, Ito K, Akiyama S, Nagasaka T, Nakao A: PGP9.5 overexpression in esophageal squamous cell carcinoma. Hepatogastroenterology. 2003, 50: 1278-1280.PubMed Takase T, Hibi K, Yamazaki T, Nakayama H, Taguchi M, Kasai Y, Ito K, Akiyama S, Nagasaka T, Nakao A: PGP9.5 overexpression in esophageal squamous cell carcinoma. Hepatogastroenterology. 2003, 50: 1278-1280.PubMed
13.
go back to reference Lee YM, Lee JY, Kim MJ, Bae HI, Park JY, Kim SG, Kim DS: Hypomethylation of the protein gene product 9.5 promoter region in gallbladder cancer and its relationship with clinicopathological features. Cancer Sci. 2006, 97: 1205-1210. 10.1111/j.1349-7006.2006.00320.xCrossRefPubMed Lee YM, Lee JY, Kim MJ, Bae HI, Park JY, Kim SG, Kim DS: Hypomethylation of the protein gene product 9.5 promoter region in gallbladder cancer and its relationship with clinicopathological features. Cancer Sci. 2006, 97: 1205-1210. 10.1111/j.1349-7006.2006.00320.xCrossRefPubMed
14.
go back to reference Mandelker DL, Yamashita K, Tokumaru Y, Mimori K, Howard DL, Tanaka Y, Carvalho AL, Jiang WW, Park HL, Kim MS: PGP9.5 promoter methylation is an independent prognostic factor for esophageal squamous cell carcinoma. Cancer Res. 2005, 65: 4963-4968. 10.1158/0008-5472.CAN-04-3923CrossRefPubMed Mandelker DL, Yamashita K, Tokumaru Y, Mimori K, Howard DL, Tanaka Y, Carvalho AL, Jiang WW, Park HL, Kim MS: PGP9.5 promoter methylation is an independent prognostic factor for esophageal squamous cell carcinoma. Cancer Res. 2005, 65: 4963-4968. 10.1158/0008-5472.CAN-04-3923CrossRefPubMed
15.
go back to reference Sato F, Meltzer SJ: CpG island hypermethylation in progression of esophageal and gastric cancer. Cancer. 2006, 106: 483-493. 10.1002/cncr.21657CrossRefPubMed Sato F, Meltzer SJ: CpG island hypermethylation in progression of esophageal and gastric cancer. Cancer. 2006, 106: 483-493. 10.1002/cncr.21657CrossRefPubMed
16.
go back to reference Kumagai T, Akagi T, Desmond JC, Kawamata N, Gery S, Imai Y, Song JH, Gui D, Said J, Koeffler HP: Epigenetic regulation and molecular characterization of C/EBPalpha in pancreatic cancer cells. Int J Cancer. 2009, 124: 827-833. 10.1002/ijc.23994PubMedCentralCrossRefPubMed Kumagai T, Akagi T, Desmond JC, Kawamata N, Gery S, Imai Y, Song JH, Gui D, Said J, Koeffler HP: Epigenetic regulation and molecular characterization of C/EBPalpha in pancreatic cancer cells. Int J Cancer. 2009, 124: 827-833. 10.1002/ijc.23994PubMedCentralCrossRefPubMed
17.
go back to reference Kim HJ, Kim YM, Lim S, Nam YK, Jeong J, Kim HJ, Lee KJ: Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis. Oncogene. 2009, 28: 117-127. 10.1038/onc.2008.364CrossRefPubMed Kim HJ, Kim YM, Lim S, Nam YK, Jeong J, Kim HJ, Lee KJ: Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis. Oncogene. 2009, 28: 117-127. 10.1038/onc.2008.364CrossRefPubMed
18.
go back to reference Bheda A, Yue W, Gullapalli A, Whitehurst C, Liu R, Pagano JS, Shackelford J: Positive reciprocal regulation of ubiquitin C-terminal hydrolase L1 and beta-catenin/TCF signaling. PLoS One. 2009, 4: e5955- 10.1371/journal.pone.0005955PubMedCentralCrossRefPubMed Bheda A, Yue W, Gullapalli A, Whitehurst C, Liu R, Pagano JS, Shackelford J: Positive reciprocal regulation of ubiquitin C-terminal hydrolase L1 and beta-catenin/TCF signaling. PLoS One. 2009, 4: e5955- 10.1371/journal.pone.0005955PubMedCentralCrossRefPubMed
19.
go back to reference Bheda A, Shackelford J, Pagano JS: Expression and functional studies of ubiquitin C-terminal hydrolase L1 regulated genes. PLoS One. 2009, 4: e6764- 10.1371/journal.pone.0006764PubMedCentralCrossRefPubMed Bheda A, Shackelford J, Pagano JS: Expression and functional studies of ubiquitin C-terminal hydrolase L1 regulated genes. PLoS One. 2009, 4: e6764- 10.1371/journal.pone.0006764PubMedCentralCrossRefPubMed
20.
go back to reference Li L, Tao Q, Jin H, van HA, Poon FF, Wang X, Zeng MS, Jia WH, Zeng YX, Chan AT: The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clin Cancer Res. 2010, 16: 2949-2958. 10.1158/1078-0432.CCR-09-3178CrossRefPubMed Li L, Tao Q, Jin H, van HA, Poon FF, Wang X, Zeng MS, Jia WH, Zeng YX, Chan AT: The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clin Cancer Res. 2010, 16: 2949-2958. 10.1158/1078-0432.CCR-09-3178CrossRefPubMed
21.
go back to reference Okochi-Takada E, Nakazawa K, Wakabayashi M, Mori A, Ichimura S, Yasugi T, Ushijima T: Silencing of the UCHL1 gene in human colorectal and ovarian cancers. Int J Cancer. 2006, 119: 1338-1344. 10.1002/ijc.22025CrossRefPubMed Okochi-Takada E, Nakazawa K, Wakabayashi M, Mori A, Ichimura S, Yasugi T, Ushijima T: Silencing of the UCHL1 gene in human colorectal and ovarian cancers. Int J Cancer. 2006, 119: 1338-1344. 10.1002/ijc.22025CrossRefPubMed
22.
go back to reference Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dorken B, Jenuwein T, Schmitt CA: Oncogene-induced senescence as an initial barrier in lymphoma development. Nature. 2005, 436: 660-665. 10.1038/nature03841CrossRefPubMed Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dorken B, Jenuwein T, Schmitt CA: Oncogene-induced senescence as an initial barrier in lymphoma development. Nature. 2005, 436: 660-665. 10.1038/nature03841CrossRefPubMed
23.
go back to reference Leiblich A, Cross SS, Catto JW, Pesce G, Hamdy FC, Rehman I: Human prostate cancer cells express neuroendocrine cell markers PGP 9.5 and chromogranin A. Prostate. 2007, 67: 1761-1769. 10.1002/pros.20654CrossRefPubMed Leiblich A, Cross SS, Catto JW, Pesce G, Hamdy FC, Rehman I: Human prostate cancer cells express neuroendocrine cell markers PGP 9.5 and chromogranin A. Prostate. 2007, 67: 1761-1769. 10.1002/pros.20654CrossRefPubMed
24.
go back to reference Nakanishi K, Sakamoto M, Yasuda J, Takamura M, Fujita N, Tsuruo T, Todo S, Hirohashi S: Critical involvement of the phosphatidylinositol 3-kinase/Akt pathway in anchorage-independent growth and hematogeneous intrahepatic metastasis of liver cancer. Cancer Res. 2002, 62: 2971-2975.PubMed Nakanishi K, Sakamoto M, Yasuda J, Takamura M, Fujita N, Tsuruo T, Todo S, Hirohashi S: Critical involvement of the phosphatidylinositol 3-kinase/Akt pathway in anchorage-independent growth and hematogeneous intrahepatic metastasis of liver cancer. Cancer Res. 2002, 62: 2971-2975.PubMed
25.
go back to reference Cantley LC, Neel BG: New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA. 1999, 96: 4240-4245. 10.1073/pnas.96.8.4240PubMedCentralCrossRefPubMed Cantley LC, Neel BG: New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA. 1999, 96: 4240-4245. 10.1073/pnas.96.8.4240PubMedCentralCrossRefPubMed
26.
go back to reference Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL: The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA. 1998, 95: 15587-15591. 10.1073/pnas.95.26.15587PubMedCentralCrossRefPubMed Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL: The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA. 1998, 95: 15587-15591. 10.1073/pnas.95.26.15587PubMedCentralCrossRefPubMed
27.
go back to reference Singh B, Reddy PG, Goberdhan A, Walsh C, Dao S, Ngai I, Chou TC, Charoenrat P, Levine AJ, Rao PH: p53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinomas. Genes Dev. 2002, 16: 984-993. 10.1101/gad.973602PubMedCentralCrossRefPubMed Singh B, Reddy PG, Goberdhan A, Walsh C, Dao S, Ngai I, Chou TC, Charoenrat P, Levine AJ, Rao PH: p53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinomas. Genes Dev. 2002, 16: 984-993. 10.1101/gad.973602PubMedCentralCrossRefPubMed
28.
go back to reference Kuo ML, Duncavage EJ, Mathew R, den BW, Pei D, Naeve D, Yamamoto T, Cheng C, Sherr CJ, Roussel MF: Arf induces p53-dependent and -independent antiproliferative genes. Cancer Res. 2003, 63: 1046-1053.PubMed Kuo ML, Duncavage EJ, Mathew R, den BW, Pei D, Naeve D, Yamamoto T, Cheng C, Sherr CJ, Roussel MF: Arf induces p53-dependent and -independent antiproliferative genes. Cancer Res. 2003, 63: 1046-1053.PubMed
29.
go back to reference Agrawal A, Yang J, Murphy RF, Agrawal DK: Regulation of the p14ARF-Mdm2-p53 pathway: an overview in breast cancer. Exp Mol Pathol. 2006, 81: 115-122. 10.1016/j.yexmp.2006.07.001CrossRefPubMed Agrawal A, Yang J, Murphy RF, Agrawal DK: Regulation of the p14ARF-Mdm2-p53 pathway: an overview in breast cancer. Exp Mol Pathol. 2006, 81: 115-122. 10.1016/j.yexmp.2006.07.001CrossRefPubMed
30.
go back to reference Tokumaru Y, Yamashita K, Kim MS, Park HL, Osada M, Mori M, Sidransky D: The role of PGP9.5 as a tumor suppressor gene in human cancer. Int J Cancer. 2008, 123: 753-759. 10.1002/ijc.23354PubMedCentralCrossRefPubMed Tokumaru Y, Yamashita K, Kim MS, Park HL, Osada M, Mori M, Sidransky D: The role of PGP9.5 as a tumor suppressor gene in human cancer. Int J Cancer. 2008, 123: 753-759. 10.1002/ijc.23354PubMedCentralCrossRefPubMed
31.
go back to reference Gartel AL: The conflicting roles of the cdk inhibitor p21(CIP1/WAF1) in apoptosis. Leuk Res. 2005, 29: 1237-1238. 10.1016/j.leukres.2005.04.023CrossRefPubMed Gartel AL: The conflicting roles of the cdk inhibitor p21(CIP1/WAF1) in apoptosis. Leuk Res. 2005, 29: 1237-1238. 10.1016/j.leukres.2005.04.023CrossRefPubMed
32.
go back to reference Gartel AL, Radhakrishnan SK: Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res. 2005, 65: 3980-3985. 10.1158/0008-5472.CAN-04-3995CrossRefPubMed Gartel AL, Radhakrishnan SK: Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res. 2005, 65: 3980-3985. 10.1158/0008-5472.CAN-04-3995CrossRefPubMed
33.
go back to reference Waldman T, Kinzler KW, Vogelstein B: p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 1995, 55: 5187-5190.PubMed Waldman T, Kinzler KW, Vogelstein B: p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 1995, 55: 5187-5190.PubMed
34.
go back to reference Majumder PK, Grisanzio C, O'Connell F, Barry M, Brito JM, Xu Q, Guney I, Berger R, Herman P, Bikoff R: A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression. Cancer Cell. 2008, 14: 146-155. 10.1016/j.ccr.2008.06.002PubMedCentralCrossRefPubMed Majumder PK, Grisanzio C, O'Connell F, Barry M, Brito JM, Xu Q, Guney I, Berger R, Herman P, Bikoff R: A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression. Cancer Cell. 2008, 14: 146-155. 10.1016/j.ccr.2008.06.002PubMedCentralCrossRefPubMed
35.
go back to reference Lehmann BD, Paine MS, Brooks AM, McCubrey JA, Renegar RH, Wang R, Terrian DM: Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 2008, 68: 7864-7871. 10.1158/0008-5472.CAN-07-6538CrossRefPubMed Lehmann BD, Paine MS, Brooks AM, McCubrey JA, Renegar RH, Wang R, Terrian DM: Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 2008, 68: 7864-7871. 10.1158/0008-5472.CAN-07-6538CrossRefPubMed
36.
go back to reference Caballero OL, Resto V, Patturajan M, Meerzaman D, Guo MZ, Engles J, Yochem R, Ratovitski E, Sidransky D, Jen J: Interaction and colocalization of PGP9.5 with JAB1 and p27(Kip1). Oncogene. 2002, 21: 3003-3010. 10.1038/sj.onc.1205390CrossRefPubMed Caballero OL, Resto V, Patturajan M, Meerzaman D, Guo MZ, Engles J, Yochem R, Ratovitski E, Sidransky D, Jen J: Interaction and colocalization of PGP9.5 with JAB1 and p27(Kip1). Oncogene. 2002, 21: 3003-3010. 10.1038/sj.onc.1205390CrossRefPubMed
37.
go back to reference Nho RS, Sheaff RJ: p27kip1 contributions to cancer. Prog Cell Cycle Res. 2003, 5: 249-259.PubMed Nho RS, Sheaff RJ: p27kip1 contributions to cancer. Prog Cell Cycle Res. 2003, 5: 249-259.PubMed
38.
go back to reference Coqueret O: New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment?. Trends Cell Biol. 2003, 13: 65-70. 10.1016/S0962-8924(02)00043-0CrossRefPubMed Coqueret O: New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment?. Trends Cell Biol. 2003, 13: 65-70. 10.1016/S0962-8924(02)00043-0CrossRefPubMed
39.
go back to reference Philipp-Staheli J, Payne SR, Kemp CJ: p27(Kip1): regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp Cell Res. 2001, 264: 148-168. 10.1006/excr.2000.5143CrossRefPubMed Philipp-Staheli J, Payne SR, Kemp CJ: p27(Kip1): regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp Cell Res. 2001, 264: 148-168. 10.1006/excr.2000.5143CrossRefPubMed
40.
go back to reference Guadagno TM, Ohtsubo M, Roberts JM, Assoian RK: A link between cyclin A expression and adhesion-dependent cell cycle progression. Science. 1993, 262: 1572-1575. 10.1126/science.8248807CrossRefPubMed Guadagno TM, Ohtsubo M, Roberts JM, Assoian RK: A link between cyclin A expression and adhesion-dependent cell cycle progression. Science. 1993, 262: 1572-1575. 10.1126/science.8248807CrossRefPubMed
41.
go back to reference Geng Y, Yu Q, Sicinska E, Das M, Bronson RT, Sicinski P: Deletion of the p27Kip1 gene restores normal development in cyclin D1-deficient mice. Proc Natl Acad Sci USA. 2001, 98: 194-199. 10.1073/pnas.011522998PubMedCentralCrossRefPubMed Geng Y, Yu Q, Sicinska E, Das M, Bronson RT, Sicinski P: Deletion of the p27Kip1 gene restores normal development in cyclin D1-deficient mice. Proc Natl Acad Sci USA. 2001, 98: 194-199. 10.1073/pnas.011522998PubMedCentralCrossRefPubMed
42.
go back to reference Zhu X, Ohtsubo M, Bohmer RM, Roberts JM, Assoian RK: Adhesion-dependent cell cycle progression linked to the expression of cyclin D1, activation of cyclin E-cdk2, and phosphorylation of the retinoblastoma protein. J Cell Biol. 1996, 133: 391-403. 10.1083/jcb.133.2.391CrossRefPubMed Zhu X, Ohtsubo M, Bohmer RM, Roberts JM, Assoian RK: Adhesion-dependent cell cycle progression linked to the expression of cyclin D1, activation of cyclin E-cdk2, and phosphorylation of the retinoblastoma protein. J Cell Biol. 1996, 133: 391-403. 10.1083/jcb.133.2.391CrossRefPubMed
Metadata
Title
Ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) is a potential tumour suppressor in prostate cancer and is frequently silenced by promoter methylation
Authors
Ramesh Ummanni
Edgar Jost
Melanie Braig
Frithjof Lohmann
Frederike Mundt
Christine Barett
Thorsten Schlomm
Guido Sauter
Tina Senff
Carsten Bokemeyer
Holger Sültmann
Catherine Meyer-Schwesinger
Tim H Brümmendorf
Stefan Balabanov
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2011
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-10-129

Other articles of this Issue 1/2011

Molecular Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine