Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Tyrosine Kinase Inhibitors | Research

A real-world study and network pharmacology analysis of EGFR-TKIs combined with ZLJT to delay drug resistance in advanced lung adenocarcinoma

Authors: Xue Han, Lan Liang, Chenming He, Qinyou Ren, Jialin Su, Liang Cao, Jin Zheng

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Objective

This study aimed to explore the efficacy and safety of combining epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) with ZiLongJin Tablet (ZLJT) in delaying acquired resistance in advanced EGFR-mutant lung adenocarcinoma (LUAD) patients. Furthermore, we employed network pharmacology and molecular docking techniques to investigate the underlying mechanisms.

Methods

A retrospective comparative study was conducted on stage IIIc/IV LUAD patients treated with EGFR-TKIs alone or in combination with ZLJT at the Second Affiliated Hospital of the Air Force Medical University between January 1, 2017, and May 1, 2023. The study evaluated the onset of TKI resistance, adverse reaction rates, safety indicators (such as aspartate aminotransferase, alanine aminotransferase, and creatinine), and inflammatory markers (neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio) to investigate the impact of EGFR-TKI combined with ZLJT on acquired resistance and prognostic indicators. Additionally, we utilized the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine, PubChem, UniProt, and Swiss Target Prediction databases to identify the active ingredients and targets of ZLJT. We obtained differentially expressed genes related to EGFR-TKI sensitivity and resistance from the Gene Expression Omnibus database using the GSE34228 dataset, which included sensitive (n = 26) and resistant (n = 26) PC9 cell lines. The "limma" package in R software was employed to detect DEGs. Based on this, we constructed a protein‒protein interaction network, performed gene ontology and KEGG enrichment analyses, and conducted pathway network analysis to elucidate the correlation between the active ingredients in ZLJT and signaling pathways. Finally, molecular docking was performed using AutoDockVina, PYMOL 2.2.0, and Discovery Studio Client v19.1.0 software to simulate spatial and energy matching during the recognition process between predicted targets and their corresponding compounds.

Results

(1) A total of 89 patients were included, with 40 patients in the EGFR-TKI combined with ZLJT group (combination group) and 49 patients in the EGFR-TKI alone group (monotherapy group). The baseline characteristics of the two groups were comparable. There was a significant difference in the onset of resistance between the combination group and the monotherapy group (P < 0.01). Compared to the monotherapy group, the combination group showed a prolongation of 3.27 months in delayed acquired resistance. There was also a statistically significant difference in the onset of resistance to first-generation TKIs between the two groups (P < 0.05). (2) In terms of safety analysis, the incidence of adverse reactions related to EGFR-TKIs was 12.5% in the combination group and 14.3% in the monotherapy group, but this difference was not statistically significant (P > 0.05). There were no statistically significant differences in serum AST, ALT, CREA, TBIL, ALB and BUN levels between the two groups after medication (P > 0.05). (3) Regarding inflammatory markers, there were no statistically significant differences in the changes in neutrophil-to-lymphocyte Ratio(NLR) and Platelet-to-lymphocyte Ratio(PLR) values before and after treatment between the two groups (P > 0.05). (4) Network pharmacology analysis identified 112 active ingredients and 290 target genes for ZLJT. From the GEO database, 2035 differentially expressed genes related to resistant LUAD were selected, and 39 target genes were obtained by taking the intersection. A "ZLJT-compound-target-disease" network was successfully constructed using Cytoscape 3.7.0. GO enrichment analysis revealed that ZLJT mainly affected biological processes such as adenylate cyclase-modulating G protein-coupled receptor. In terms of cellular components, ZLJT was associated with the cell projection membrane. The molecular function primarily focused on protein heterodimerization activity. KEGG enrichment analysis indicated that ZLJT exerted its antitumor and anti-drug resistance effects through pathways such as the PI3K-Akt pathway. Molecular docking showed that luteolin had good binding activity with FOS (-9.8 kJ/mol), as did tanshinone IIA with FOS (-9.8 kJ/mol) and quercetin with FOS (-8.7 kJ/mol).

Conclusion

ZLJT has potential antitumor progression effects. For patients with EGFR gene-mutated non-small cell LUAD, combining ZLJT with EGFR-TKI treatment can delay the occurrence of acquired resistance. The underlying mechanisms may involve altering signal transduction pathways, blocking the tumor cell cycle, inhibiting tumor activity, enhancing cellular vitality, and improving the bioavailability of combination therapy. The combination of EGFR-TKI and ZLJT represents an effective approach for the treatment of tumors using both Chinese and Western medicine.
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed
2.
go back to reference Schenk EL, Patil T, Pacheco J, Bunn PA Jr. 2020 innovation-based optimism for lung cancer outcomes. Oncologist. 2021;26(3):e454–72.CrossRefPubMed Schenk EL, Patil T, Pacheco J, Bunn PA Jr. 2020 innovation-based optimism for lung cancer outcomes. Oncologist. 2021;26(3):e454–72.CrossRefPubMed
3.
go back to reference Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50.CrossRef Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50.CrossRef
4.
go back to reference Shi Y, Au JSK, Thongprasert S, Srinivasan S, Tsai CM, Khoa MT, Heeroma K, Itoh Y, Cornelio G, Yang PC. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol. 2014;9(2):154–62.CrossRefPubMedPubMedCentral Shi Y, Au JSK, Thongprasert S, Srinivasan S, Tsai CM, Khoa MT, Heeroma K, Itoh Y, Cornelio G, Yang PC. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol. 2014;9(2):154–62.CrossRefPubMedPubMedCentral
5.
go back to reference Dearden S, Stevens J, Wu YL, Blowers D. Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap). Ann Oncol. 2013;24(9):2371–6.CrossRefPubMedPubMedCentral Dearden S, Stevens J, Wu YL, Blowers D. Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap). Ann Oncol. 2013;24(9):2371–6.CrossRefPubMedPubMedCentral
6.
go back to reference Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, Bruno DS, Chang JY, Chirieac LR, D’Amico TA, et al. NCCN guidelines insights: non-small cell lung cancer, version 2.2021. J Natl Compr Canc Netw. 2021;19(3):254–66.CrossRefPubMed Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, Bruno DS, Chang JY, Chirieac LR, D’Amico TA, et al. NCCN guidelines insights: non-small cell lung cancer, version 2.2021. J Natl Compr Canc Netw. 2021;19(3):254–66.CrossRefPubMed
7.
go back to reference Hsu WH, Yang JCH, Mok TS, Loong HH. Overview of current systemic management of EGFR-mutant NSCLC. Ann Oncol. 2018;29(suppl_1):i3–9.CrossRefPubMed Hsu WH, Yang JCH, Mok TS, Loong HH. Overview of current systemic management of EGFR-mutant NSCLC. Ann Oncol. 2018;29(suppl_1):i3–9.CrossRefPubMed
8.
go back to reference Park H-R, Kim TM, Lee Y, Kim S, Park S, Ju YS, Kim M, Keam B, Jeon YK, Kim D-W, et al. Acquired resistance to third-generation EGFR tyrosine kinase inhibitors in patients with De Novo EGFRT790M-mutant NSCLC. J Thorac Oncol. 2021;16(11):1859–71.CrossRefPubMed Park H-R, Kim TM, Lee Y, Kim S, Park S, Ju YS, Kim M, Keam B, Jeon YK, Kim D-W, et al. Acquired resistance to third-generation EGFR tyrosine kinase inhibitors in patients with De Novo EGFRT790M-mutant NSCLC. J Thorac Oncol. 2021;16(11):1859–71.CrossRefPubMed
9.
go back to reference Sundar R, Chénard-Poirier M, Collins DC, Yap TA. Imprecision in the era of precision medicine in non-small cell lung cancer. Front Med (Lausanne). 2017;4:39.PubMedPubMedCentral Sundar R, Chénard-Poirier M, Collins DC, Yap TA. Imprecision in the era of precision medicine in non-small cell lung cancer. Front Med (Lausanne). 2017;4:39.PubMedPubMedCentral
10.
go back to reference Suda K, Mizuuchi H, Maehara Y, Mitsudomi T. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation–diversity, ductility, and destiny. Cancer Metastasis Rev. 2012;31(3–4):807–14.CrossRefPubMed Suda K, Mizuuchi H, Maehara Y, Mitsudomi T. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation–diversity, ductility, and destiny. Cancer Metastasis Rev. 2012;31(3–4):807–14.CrossRefPubMed
11.
go back to reference Wang D, Xu Y, Huang T, Peng W, Zhu D, Zhou X. Clinical efficacy and safety of NSCLC ancillary treatment with compound Kushen injection through immunocompetence regulation: a systematic review and meta-analysis. Phytomedicine. 2022;104:15431.CrossRef Wang D, Xu Y, Huang T, Peng W, Zhu D, Zhou X. Clinical efficacy and safety of NSCLC ancillary treatment with compound Kushen injection through immunocompetence regulation: a systematic review and meta-analysis. Phytomedicine. 2022;104:15431.CrossRef
12.
go back to reference Chen Z, Vallega KA, Chen H, Zhou J, Ramalingam SS, Sun SY. The natural product berberine synergizes with osimertinib preferentially against MET-amplified osimertinib-resistant lung cancer via direct MET inhibition. Pharmacol Res. 2022;175:105998.CrossRefPubMed Chen Z, Vallega KA, Chen H, Zhou J, Ramalingam SS, Sun SY. The natural product berberine synergizes with osimertinib preferentially against MET-amplified osimertinib-resistant lung cancer via direct MET inhibition. Pharmacol Res. 2022;175:105998.CrossRefPubMed
13.
go back to reference Dong Y, Guo L, Qi Y, Song H, Cai Y, Wei S. Efficiency and safety of Zilongjin tablet combined with platinum-based chemotherapy in treatment of lung cancer: a meta-analysis. Chin Tradit Herb Drugs. 2022;53(3):806–17. Dong Y, Guo L, Qi Y, Song H, Cai Y, Wei S. Efficiency and safety of Zilongjin tablet combined with platinum-based chemotherapy in treatment of lung cancer: a meta-analysis. Chin Tradit Herb Drugs. 2022;53(3):806–17.
14.
go back to reference Chen Y, Bi L, Luo H, Jiang Y, Chen F, Wang Y, Wei G, Chen W. Water extract of ginseng and astragalus regulates macrophage polarization and synergistically enhances DDP’s anticancer effect. J Ethnopharmacol. 2019;232:11–20.CrossRefPubMed Chen Y, Bi L, Luo H, Jiang Y, Chen F, Wang Y, Wei G, Chen W. Water extract of ginseng and astragalus regulates macrophage polarization and synergistically enhances DDP’s anticancer effect. J Ethnopharmacol. 2019;232:11–20.CrossRefPubMed
15.
go back to reference Dai P-C, Liu D-L, Zhang L, Ye J, Wang Q, Zhang H-W, Lin X-H, Lai GX. Astragaloside IV sensitizes non-small cell lung cancer cells to gefitinib potentially via regulation of SIRT6. Tumour Biol. 2017;39(4):1010428317697555.CrossRefPubMed Dai P-C, Liu D-L, Zhang L, Ye J, Wang Q, Zhang H-W, Lin X-H, Lai GX. Astragaloside IV sensitizes non-small cell lung cancer cells to gefitinib potentially via regulation of SIRT6. Tumour Biol. 2017;39(4):1010428317697555.CrossRefPubMed
16.
go back to reference Wu T-H, Yeh K-Y, Wang C-H, Wang H, Li T-L, Chan Y-L, Wu CJ. The Combination of Astragalus membranaceus and Angelica sinensis inhibits lung cancer and cachexia through Its immunomodulatory function. J Oncol. 2019;2019:9206951.CrossRefPubMedPubMedCentral Wu T-H, Yeh K-Y, Wang C-H, Wang H, Li T-L, Chan Y-L, Wu CJ. The Combination of Astragalus membranaceus and Angelica sinensis inhibits lung cancer and cachexia through Its immunomodulatory function. J Oncol. 2019;2019:9206951.CrossRefPubMedPubMedCentral
17.
go back to reference Xiao Z-M, Wang AM, Wang XY, Shen SR. A study on the inhibitory effect of solanum lyratum thunb extract on Lewis lung carcinoma lines. Afr J Tradit Complement Altern Med. 2013;10(6):444–8.CrossRefPubMedPubMedCentral Xiao Z-M, Wang AM, Wang XY, Shen SR. A study on the inhibitory effect of solanum lyratum thunb extract on Lewis lung carcinoma lines. Afr J Tradit Complement Altern Med. 2013;10(6):444–8.CrossRefPubMedPubMedCentral
18.
go back to reference Aziz IIA, Riyad AA, Hussian AA, Mazen GM, Kannaiyan M. Solanum procumbens-derived zinc oxide nanoparticles suppress lung cancer in vitro through elevation of ROS. Bioinorg Chem Appl. 2022;2022:2724302. Aziz IIA, Riyad AA, Hussian AA, Mazen GM, Kannaiyan M. Solanum procumbens-derived zinc oxide nanoparticles suppress lung cancer in vitro through elevation of ROS. Bioinorg Chem Appl. 2022;2022:2724302.
19.
go back to reference Ye Y-T, Zhong W, Sun P, Wang D, Wang C, Hu L-M, Qian JQ. Apoptosis induced by the methanol extract of Salvia miltiorrhiza Bunge in non-small cell lung cancer through PTEN-mediated inhibition of PI3K/Akt pathway. J Ethnopharmacol. 2017;200:107–16.CrossRefPubMed Ye Y-T, Zhong W, Sun P, Wang D, Wang C, Hu L-M, Qian JQ. Apoptosis induced by the methanol extract of Salvia miltiorrhiza Bunge in non-small cell lung cancer through PTEN-mediated inhibition of PI3K/Akt pathway. J Ethnopharmacol. 2017;200:107–16.CrossRefPubMed
20.
go back to reference Yang W-E, Ho Y-C, Tang C-M, Hsieh Y-S, Chen P-N, Lai C-T, Yang S-F, Lin CW. Duchesnea indica extract attenuates oral cancer cells metastatic potential through the inhibition of the matrix metalloproteinase-2 activity by down-regulating the MEK/ERK pathway. Phytomedicine. 2019;63:152960.CrossRefPubMed Yang W-E, Ho Y-C, Tang C-M, Hsieh Y-S, Chen P-N, Lai C-T, Yang S-F, Lin CW. Duchesnea indica extract attenuates oral cancer cells metastatic potential through the inhibition of the matrix metalloproteinase-2 activity by down-regulating the MEK/ERK pathway. Phytomedicine. 2019;63:152960.CrossRefPubMed
21.
go back to reference Wang Q, Acharya N, Liu Z, Zhou X, Cromie M, Zhu J, Gao W. Enhanced anticancer effects of Scutellaria barbata D. Don in combination with traditional Chinese medicine components on non-small cell lung cancer cells. J Ethnopharmacol. 2018;217:140–51.CrossRefPubMed Wang Q, Acharya N, Liu Z, Zhou X, Cromie M, Zhu J, Gao W. Enhanced anticancer effects of Scutellaria barbata D. Don in combination with traditional Chinese medicine components on non-small cell lung cancer cells. J Ethnopharmacol. 2018;217:140–51.CrossRefPubMed
22.
go back to reference Kaya P, Lee SR, Lee YH, Kwon SW, Yang H, Lee HW, Hong EJ. Curcumae radix extract decreases mammary tumor-derived lung metastasis via suppression of C-C chemokine receptor type 7 expression. Nutrients. 2019;11(2):410.CrossRefPubMedPubMedCentral Kaya P, Lee SR, Lee YH, Kwon SW, Yang H, Lee HW, Hong EJ. Curcumae radix extract decreases mammary tumor-derived lung metastasis via suppression of C-C chemokine receptor type 7 expression. Nutrients. 2019;11(2):410.CrossRefPubMedPubMedCentral
23.
go back to reference Xiao W, Xu Y, Baak JP, Dai J, Jing L, Zhu H, Gan Y, Zheng S. Network module analysis and molecular docking-based study on the mechanism of astragali radix against non-small cell lung cancer. BMC Complement Med Ther. 2023;23(1):345.CrossRefPubMedPubMedCentral Xiao W, Xu Y, Baak JP, Dai J, Jing L, Zhu H, Gan Y, Zheng S. Network module analysis and molecular docking-based study on the mechanism of astragali radix against non-small cell lung cancer. BMC Complement Med Ther. 2023;23(1):345.CrossRefPubMedPubMedCentral
26.
go back to reference Rami-Porta R, Asamura H, Travis WD, Rusch VW. Lung cancer - major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(2):138–55.CrossRefPubMed Rami-Porta R, Asamura H, Travis WD, Rusch VW. Lung cancer - major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(2):138–55.CrossRefPubMed
27.
go back to reference Kaira K, Takahashi T, Murakami H, Tsuya A, Nakamura Y, Naito T, Endo M, Yamamoto N. Long-term survivors of more than 5 years in advanced non-small cell lung cancer. Lung Cancer. 2010;67(1):120–3.CrossRefPubMed Kaira K, Takahashi T, Murakami H, Tsuya A, Nakamura Y, Naito T, Endo M, Yamamoto N. Long-term survivors of more than 5 years in advanced non-small cell lung cancer. Lung Cancer. 2010;67(1):120–3.CrossRefPubMed
28.
go back to reference Soria J-C, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, Dechaphunkul A, Imamura F, Nogami N, Kurata T, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378(2):113–25.CrossRefPubMed Soria J-C, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, Dechaphunkul A, Imamura F, Nogami N, Kurata T, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378(2):113–25.CrossRefPubMed
29.
go back to reference Soria J-C, Mok TS, Cappuzzo F, Jänne PA. EGFR-mutated oncogene-addicted non-small cell lung cancer: current trends and future prospects. Cancer Treat Rev. 2012;38(5):416–30.CrossRefPubMed Soria J-C, Mok TS, Cappuzzo F, Jänne PA. EGFR-mutated oncogene-addicted non-small cell lung cancer: current trends and future prospects. Cancer Treat Rev. 2012;38(5):416–30.CrossRefPubMed
30.
go back to reference Kim JH, Kim J, Im SS, Lee JH, Hwang S, Chang E-J, Shin D-M, Rho JK, Son J. BIX01294 inhibits EGFR signaling in EGFR-mutant lung adenocarcinoma cells through a BCKDHA-mediated reduction in the EGFR level. Exp Mol Med. 2021;53(12):1877–87.CrossRefPubMedPubMedCentral Kim JH, Kim J, Im SS, Lee JH, Hwang S, Chang E-J, Shin D-M, Rho JK, Son J. BIX01294 inhibits EGFR signaling in EGFR-mutant lung adenocarcinoma cells through a BCKDHA-mediated reduction in the EGFR level. Exp Mol Med. 2021;53(12):1877–87.CrossRefPubMedPubMedCentral
31.
go back to reference Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, Kris MG, Miller VA, Ladanyi M, Riely GJ. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19(8):2240–7.CrossRefPubMedPubMedCentral Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, Kris MG, Miller VA, Ladanyi M, Riely GJ. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19(8):2240–7.CrossRefPubMedPubMedCentral
32.
go back to reference Sos ML, Koker M, Weir BA, Heynck S, Rabinovsky R, Zander T, Seeger JM, Weiss J, Fischer F, Frommolt P, et al. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res. 2009;69(8):3256–61.CrossRefPubMedPubMedCentral Sos ML, Koker M, Weir BA, Heynck S, Rabinovsky R, Zander T, Seeger JM, Weiss J, Fischer F, Frommolt P, et al. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res. 2009;69(8):3256–61.CrossRefPubMedPubMedCentral
33.
go back to reference Bruin ECd, Cowell C, Warne PH, Jiang M, Saunders RE, Melnick MA, Gettinger S, Walther Z, Wurtz A, Heynen GJ, et al. Reduced NF1 expression confers resistance to EGFR inhibition in lung cancer. Cancer Discov. 2014;4(5):606–19.CrossRefPubMedPubMedCentral Bruin ECd, Cowell C, Warne PH, Jiang M, Saunders RE, Melnick MA, Gettinger S, Walther Z, Wurtz A, Heynen GJ, et al. Reduced NF1 expression confers resistance to EGFR inhibition in lung cancer. Cancer Discov. 2014;4(5):606–19.CrossRefPubMedPubMedCentral
34.
go back to reference Tricker EM, Xu C, Uddin S, Capelletti M, Ercan D, Ogino A, Pratilas CA, Rosen N, Gray NS, Wong K-K, et al. Combined EGFR/MEK inhibition prevents the emergence of resistance in EGFR-mutant lung cancer. Cancer Discov. 2015;5(9):960–71.CrossRefPubMedPubMedCentral Tricker EM, Xu C, Uddin S, Capelletti M, Ercan D, Ogino A, Pratilas CA, Rosen N, Gray NS, Wong K-K, et al. Combined EGFR/MEK inhibition prevents the emergence of resistance in EGFR-mutant lung cancer. Cancer Discov. 2015;5(9):960–71.CrossRefPubMedPubMedCentral
35.
go back to reference Lam TK, Rotunno M, Lubin JH, Wacholder S, Consonni D, Pesatori AC, Bertazzi PA, Chanock SJ, Burdette L, Goldstein AM, et al. Dietary quercetin, quercetin-gene interaction, metabolic gene expression in lung tissue and lung cancer risk. Carcinogenesis. 2010;31(4):634–42.CrossRefPubMed Lam TK, Rotunno M, Lubin JH, Wacholder S, Consonni D, Pesatori AC, Bertazzi PA, Chanock SJ, Burdette L, Goldstein AM, et al. Dietary quercetin, quercetin-gene interaction, metabolic gene expression in lung tissue and lung cancer risk. Carcinogenesis. 2010;31(4):634–42.CrossRefPubMed
36.
go back to reference Murakami A, Ashida H, Terao J. Multitargeted cancer prevention by quercetin. Cancer Lett. 2008;269(2):315–25.CrossRefPubMed Murakami A, Ashida H, Terao J. Multitargeted cancer prevention by quercetin. Cancer Lett. 2008;269(2):315–25.CrossRefPubMed
37.
go back to reference Tan X-L, Spivack SD. Dietary chemoprevention strategies for induction of phase II xenobiotic-metabolizing enzymes in lung carcinogenesis: a review. Lung Cancer. 2009;65(2):129–37.CrossRefPubMed Tan X-L, Spivack SD. Dietary chemoprevention strategies for induction of phase II xenobiotic-metabolizing enzymes in lung carcinogenesis: a review. Lung Cancer. 2009;65(2):129–37.CrossRefPubMed
38.
go back to reference Hu Y, Li R, Jin J, Wang Y, Ma R. Quercetin improves pancreatic cancer chemo-sensitivity by regulating oxidative-inflammatory networks. J Food Biochem. 2022;46(12):e14453.CrossRefPubMed Hu Y, Li R, Jin J, Wang Y, Ma R. Quercetin improves pancreatic cancer chemo-sensitivity by regulating oxidative-inflammatory networks. J Food Biochem. 2022;46(12):e14453.CrossRefPubMed
39.
go back to reference Masraksa W, Tanasawet S, Hutamekalin P, Wongtawatchai T, Sukketsiri W. Luteolin attenuates migration and invasion of lung cancer cells via suppressing focal adhesion kinase and non-receptor tyrosine kinase signaling pathway. Nutr Res Pract. 2020;14(2):127–33.CrossRefPubMed Masraksa W, Tanasawet S, Hutamekalin P, Wongtawatchai T, Sukketsiri W. Luteolin attenuates migration and invasion of lung cancer cells via suppressing focal adhesion kinase and non-receptor tyrosine kinase signaling pathway. Nutr Res Pract. 2020;14(2):127–33.CrossRefPubMed
40.
go back to reference Zhang M, Wang R, Tian J, Song M, Zhao R, Liu K, Zhu F, Shim J-H, Dong Z, Lee MH. Targeting LIMK1 with luteolin inhibits the growth of lung cancer in vitro and in vivo. J Cell Mol Med. 2021;25(12):5560–71.CrossRefPubMedPubMedCentral Zhang M, Wang R, Tian J, Song M, Zhao R, Liu K, Zhu F, Shim J-H, Dong Z, Lee MH. Targeting LIMK1 with luteolin inhibits the growth of lung cancer in vitro and in vivo. J Cell Mol Med. 2021;25(12):5560–71.CrossRefPubMedPubMedCentral
42.
go back to reference Devi KP, Malar DS, Nabavi SF, Sureda A, Xiao J, Nabavi SM, Daglia M. Kaempferol and inflammation: from chemistry to medicine. Pharmacol Res. 2015;99:1–10.CrossRefPubMed Devi KP, Malar DS, Nabavi SF, Sureda A, Xiao J, Nabavi SM, Daglia M. Kaempferol and inflammation: from chemistry to medicine. Pharmacol Res. 2015;99:1–10.CrossRefPubMed
43.
go back to reference Kim E-O, Kang SE, Im CR, Lee J-H, Ahn KS, Yang WM, Um J-Y, Lee S-G, Yun M. Tanshinone IIA induces TRAIL sensitization of human lung cancer cells through selective ER stress induction. Int J Oncol. 2016;48(5):2205–12.CrossRefPubMed Kim E-O, Kang SE, Im CR, Lee J-H, Ahn KS, Yang WM, Um J-Y, Lee S-G, Yun M. Tanshinone IIA induces TRAIL sensitization of human lung cancer cells through selective ER stress induction. Int J Oncol. 2016;48(5):2205–12.CrossRefPubMed
44.
go back to reference Fang Z-Y, Zhang M, Liu J-N, Zhao X, Zhang Y-Q, Fang L. Tanshinone IIA: a review of its anticancer effects. Front Pharmacol. 2020;11:611087.CrossRefPubMed Fang Z-Y, Zhang M, Liu J-N, Zhao X, Zhang Y-Q, Fang L. Tanshinone IIA: a review of its anticancer effects. Front Pharmacol. 2020;11:611087.CrossRefPubMed
45.
go back to reference Moore MM, Chua W, Charles KA, Clarke SJ. Inflammation and cancer: causes and consequences. Clin Pharmacol Ther. 2010;87(4):504–8.CrossRefPubMed Moore MM, Chua W, Charles KA, Clarke SJ. Inflammation and cancer: causes and consequences. Clin Pharmacol Ther. 2010;87(4):504–8.CrossRefPubMed
46.
go back to reference Han S, Jeong AJ, Yang H, Kang KB, Lee H, Yi EH, Kim B-H, Cho C-H, Chung JW, Sung SH, et al. Ginsenoside 20(S)-Rh2 exerts anti-cancer activity through targeting IL-6-induced JAK2/STAT3 pathway in human colorectal cancer cells. J Ethnopharmacol. 2016;194:83–90.CrossRefPubMed Han S, Jeong AJ, Yang H, Kang KB, Lee H, Yi EH, Kim B-H, Cho C-H, Chung JW, Sung SH, et al. Ginsenoside 20(S)-Rh2 exerts anti-cancer activity through targeting IL-6-induced JAK2/STAT3 pathway in human colorectal cancer cells. J Ethnopharmacol. 2016;194:83–90.CrossRefPubMed
47.
go back to reference Eichten A, Su J, Adler AP, Zhang L, Ioffe E, Parveen AA, Yancopoulos GD, Rudge J, Lowy I, Lin HC, et al. Resistance to anti-VEGF therapy mediated by autocrine IL6/STAT3 Signaling and Overcome by IL6 Blockade. Cancer Res. 2016;76(8):2327–39.CrossRefPubMed Eichten A, Su J, Adler AP, Zhang L, Ioffe E, Parveen AA, Yancopoulos GD, Rudge J, Lowy I, Lin HC, et al. Resistance to anti-VEGF therapy mediated by autocrine IL6/STAT3 Signaling and Overcome by IL6 Blockade. Cancer Res. 2016;76(8):2327–39.CrossRefPubMed
48.
go back to reference Niu L-L, Cheng C-l, Li M-Y, Yang S-L, Hu B-G, Chong CCN, Chan SL, Ren J, Chen GG, Lai PBS. ID1-induced p16/IL6 axis activation contributes to the resistant of hepatocellular carcinoma cells to sorafenib. Cell Death Dis. 2018;9(9):852.CrossRefPubMedPubMedCentral Niu L-L, Cheng C-l, Li M-Y, Yang S-L, Hu B-G, Chong CCN, Chan SL, Ren J, Chen GG, Lai PBS. ID1-induced p16/IL6 axis activation contributes to the resistant of hepatocellular carcinoma cells to sorafenib. Cell Death Dis. 2018;9(9):852.CrossRefPubMedPubMedCentral
49.
go back to reference Hu J-W, Ding G-Y, Fu P-Y, Tang W-G, Sun Q-M, Zhu X-D, Shen Y-H, Zhou J, Fan J, Sun H-C, et al. Identification of FOS as a candidate risk gene for liver cancer by integrated bioinformatic analysis. Biomed Res Int. 2020;2020:6784138.CrossRefPubMedPubMedCentral Hu J-W, Ding G-Y, Fu P-Y, Tang W-G, Sun Q-M, Zhu X-D, Shen Y-H, Zhou J, Fan J, Sun H-C, et al. Identification of FOS as a candidate risk gene for liver cancer by integrated bioinformatic analysis. Biomed Res Int. 2020;2020:6784138.CrossRefPubMedPubMedCentral
50.
go back to reference Zhang Z, Peng L, Yang W, Li B, Hua Y, Luo S. PHF5A facilitates the development and progression of gastric cancer through SKP2-mediated stabilization of FOS. J Transl Med. 2023;21(1):5.CrossRefPubMedPubMedCentral Zhang Z, Peng L, Yang W, Li B, Hua Y, Luo S. PHF5A facilitates the development and progression of gastric cancer through SKP2-mediated stabilization of FOS. J Transl Med. 2023;21(1):5.CrossRefPubMedPubMedCentral
52.
go back to reference Zhao C, Li H, Lin H-J, Yang S, Lin J, Liang G. Feedback activation of STAT3 as a cancer drug-resistance mechanism. Trends Pharmacol Sci. 2016;37(1):47–61.CrossRefPubMed Zhao C, Li H, Lin H-J, Yang S, Lin J, Liang G. Feedback activation of STAT3 as a cancer drug-resistance mechanism. Trends Pharmacol Sci. 2016;37(1):47–61.CrossRefPubMed
53.
go back to reference Wolfson E, Solomon S, Schmukler E, Goldshmit Y, Pinkas-Kramarski R. Nucleolin and ErbB2 inhibition reduces tumorigenicity of ErbB2-positive breast cancer. Cell Death Dis. 2018;9(2):47.CrossRefPubMedPubMedCentral Wolfson E, Solomon S, Schmukler E, Goldshmit Y, Pinkas-Kramarski R. Nucleolin and ErbB2 inhibition reduces tumorigenicity of ErbB2-positive breast cancer. Cell Death Dis. 2018;9(2):47.CrossRefPubMedPubMedCentral
54.
go back to reference Mehrabi M, Mahdiuni H, Rasouli H, Mansouri K, Shahlaei M, Khodarahmi R. Comparative experimental/theoretical studies on the EGFR dimerization under the effect of EGF/EGF analogues binding: Highlighting the importance of EGF/EGFR interactions at site III interface. Int J Biol Macromol. 2018;115:401–17.CrossRefPubMed Mehrabi M, Mahdiuni H, Rasouli H, Mansouri K, Shahlaei M, Khodarahmi R. Comparative experimental/theoretical studies on the EGFR dimerization under the effect of EGF/EGF analogues binding: Highlighting the importance of EGF/EGFR interactions at site III interface. Int J Biol Macromol. 2018;115:401–17.CrossRefPubMed
55.
go back to reference Chen M, Ding Y, Tong Z. Efficacy and Safety of Sophora flavescens (Kushen) based traditional Chinese medicine in the treatment of ulcerative colitis: clinical evidence and potential mechanisms. Front Pharmacol. 2020;11:603476.CrossRefPubMedPubMedCentral Chen M, Ding Y, Tong Z. Efficacy and Safety of Sophora flavescens (Kushen) based traditional Chinese medicine in the treatment of ulcerative colitis: clinical evidence and potential mechanisms. Front Pharmacol. 2020;11:603476.CrossRefPubMedPubMedCentral
56.
go back to reference Harvey RD, Morgan ET. Cancer, inflammation, and therapy: effects on cytochrome p450-mediated drug metabolism and implications for novel immunotherapeutic agents. Clin Pharmacol Ther. 2014;96(4):449–57.CrossRefPubMed Harvey RD, Morgan ET. Cancer, inflammation, and therapy: effects on cytochrome p450-mediated drug metabolism and implications for novel immunotherapeutic agents. Clin Pharmacol Ther. 2014;96(4):449–57.CrossRefPubMed
57.
go back to reference Lin F, Zhang G, Yang X, Wang M, Wang R, Wan M, Wang J, Wu B, Yan T, Jia Y. A network pharmacology approach and experimental validation to investigate the anticancer mechanism and potential active targets of ethanol extract of Wei-Tong-Xin against colorectal cancer through induction of apoptosis via PI3K/AKT signaling pathway. J Ethnopharmacol. 2023;303:115933.CrossRefPubMed Lin F, Zhang G, Yang X, Wang M, Wang R, Wan M, Wang J, Wu B, Yan T, Jia Y. A network pharmacology approach and experimental validation to investigate the anticancer mechanism and potential active targets of ethanol extract of Wei-Tong-Xin against colorectal cancer through induction of apoptosis via PI3K/AKT signaling pathway. J Ethnopharmacol. 2023;303:115933.CrossRefPubMed
58.
go back to reference Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8(4):299–309.CrossRefPubMed Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8(4):299–309.CrossRefPubMed
59.
go back to reference Iwamoto H, Abe M, Yang Y, Cui D, Seki T, Nakamura M, Hosaka K, Lim S, Wu J, He X, et al. Cancer lipid metabolism confers antiangiogenic drug resistance. Cell Metab. 2018;28(1):104-117.e105.CrossRefPubMed Iwamoto H, Abe M, Yang Y, Cui D, Seki T, Nakamura M, Hosaka K, Lim S, Wu J, He X, et al. Cancer lipid metabolism confers antiangiogenic drug resistance. Cell Metab. 2018;28(1):104-117.e105.CrossRefPubMed
60.
go back to reference Zhang Y, Chen Q, Gong M, Zeng Y, Gao D. Gene regulatory networks analysis of muscle-invasive bladder cancer subtypes using differential graphical model. BMC Genomics. 2021;22(Suppl 1):863.CrossRefPubMedPubMedCentral Zhang Y, Chen Q, Gong M, Zeng Y, Gao D. Gene regulatory networks analysis of muscle-invasive bladder cancer subtypes using differential graphical model. BMC Genomics. 2021;22(Suppl 1):863.CrossRefPubMedPubMedCentral
61.
go back to reference Ji X, Bossé Y, Landi MT, Gui J, Xiao X, Qian D, Joubert P, Lamontagne M, Li Y, Gorlov I, et al. Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk. Nat Commun. 2018;9(1):3221.CrossRefPubMedPubMedCentral Ji X, Bossé Y, Landi MT, Gui J, Xiao X, Qian D, Joubert P, Lamontagne M, Li Y, Gorlov I, et al. Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk. Nat Commun. 2018;9(1):3221.CrossRefPubMedPubMedCentral
62.
go back to reference Palle K, Mani C, Tripathi K, Athar M. Aberrant GLI1 Activation in DNA damage response carcinogenesis and chemoresistance. Cancers (Basel). 2015;7(4):2330–51.CrossRefPubMed Palle K, Mani C, Tripathi K, Athar M. Aberrant GLI1 Activation in DNA damage response carcinogenesis and chemoresistance. Cancers (Basel). 2015;7(4):2330–51.CrossRefPubMed
Metadata
Title
A real-world study and network pharmacology analysis of EGFR-TKIs combined with ZLJT to delay drug resistance in advanced lung adenocarcinoma
Authors
Xue Han
Lan Liang
Chenming He
Qinyou Ren
Jialin Su
Liang Cao
Jin Zheng
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04213-3

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue