Skip to main content
Top
Published in: Lasers in Medical Science 9/2018

01-12-2018 | Review Article

Types of advanced optical microscopy techniques for breast cancer research: a review

Authors: Aparna Dravid U., Nirmal Mazumder

Published in: Lasers in Medical Science | Issue 9/2018

Login to get access

Abstract

A cancerous cell is characterized by morphological and metabolic changes which are the key features of carcinogenesis. Adenosine triphosphate (ATP) in cancer cells is primarily produced by aerobic glycolysis rather than oxidative phosphorylation. In normal cellular metabolism, nicotinamide adenine dinucleotide (NADH) is considered as a principle electron donor and flavin adenine dinucleotide (FAD) as an electron acceptor. During metabolism in a cancerous cell, a net increase in NADH is found as the pathway switched from oxidative phosphorylation to aerobic glycolysis. Often during initiation and progression of cancer, the developmental regulation of extracellular matrix (ECM) is restricted and becomes disorganized. Tumor cell behavior is regulated by the ECM in the tumor micro environment. Collagen, which forms the scaffold of tumor micro-environment also influences its behavior. Advanced optical microscopy techniques are useful for determining the metabolic characteristics of cancerous, normal cells and tissues. They can be used to identify the collagen microstructure and the function of NADH, FAD, and lipids in living system. In this review article, various optical microscopy techniques applied for breast cancer research are discussed including fluorescence, confocal, second harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS), and fluorescence lifetime imaging (FLIM).
Literature
1.
2.
go back to reference Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRef Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRef
3.
go back to reference Yokota J (2000) Tumor progression and metastasis. Carcinogenesis 21(3):497–503CrossRef Yokota J (2000) Tumor progression and metastasis. Carcinogenesis 21(3):497–503CrossRef
4.
go back to reference Qian B-Z, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51CrossRef Qian B-Z, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51CrossRef
5.
go back to reference Pike MC, Spicer DV, Dahmoush L, Press MF (1993) Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev 15(1):17–35CrossRef Pike MC, Spicer DV, Dahmoush L, Press MF (1993) Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev 15(1):17–35CrossRef
6.
go back to reference Lloyd-Lewis B, Davis FM, Harris OB, Hitchcock JR, Lourenco FC, Mathias P, Watson CJ (2016) Imaging the mammary gland and mammary tumors in 3D: optical tissue clearing and immunofluorescence methods. BioMed Central 18:1271–12717 Lloyd-Lewis B, Davis FM, Harris OB, Hitchcock JR, Lourenco FC, Mathias P, Watson CJ (2016) Imaging the mammary gland and mammary tumors in 3D: optical tissue clearing and immunofluorescence methods. BioMed Central 18:1271–12717
7.
go back to reference Jensen EC (2012) Types of imaging, part 2: an overview of fluorescence microscopy. Anat Rec (Hoboken) 295:1621–1627CrossRef Jensen EC (2012) Types of imaging, part 2: an overview of fluorescence microscopy. Anat Rec (Hoboken) 295:1621–1627CrossRef
8.
go back to reference Wu Y, Fu F, Lian Y et al (2015) Monitoring morphological alterations during invasive ductal breast carcinoma progression using multiphoton microscopy. Lasers Med Sci 30:1109–1115CrossRef Wu Y, Fu F, Lian Y et al (2015) Monitoring morphological alterations during invasive ductal breast carcinoma progression using multiphoton microscopy. Lasers Med Sci 30:1109–1115CrossRef
9.
go back to reference Campagnola P (2011) Second harmonic generation imaging microscopy: applications to diseases diagnostics. Anal Chem 83(9):3224–3231CrossRef Campagnola P (2011) Second harmonic generation imaging microscopy: applications to diseases diagnostics. Anal Chem 83(9):3224–3231CrossRef
10.
go back to reference Fu L, Gu M (2007) Fibre-optic nonlinear optical microscopy and endoscopy. J Microsc 226:195–206CrossRef Fu L, Gu M (2007) Fibre-optic nonlinear optical microscopy and endoscopy. J Microsc 226:195–206CrossRef
11.
go back to reference Baak JPA, Thunnissen FBJM, Oudejans CBM, Schipper NW (1987) Potential clinical uses of laser scan microscopy. Appl Opt 26(16):3413–3416CrossRef Baak JPA, Thunnissen FBJM, Oudejans CBM, Schipper NW (1987) Potential clinical uses of laser scan microscopy. Appl Opt 26(16):3413–3416CrossRef
12.
go back to reference Dobbs J, Krishnamurthy S, Kyrish M, Benveniste AP, Yang W, Kortum RR (2015) Confocal fluorescence microscopy for rapid evaluation of invasive tumor cellularity of inflammatory breast carcinoma core needle biopsies. Breast Cancer Res Treat 149(1):303–310CrossRef Dobbs J, Krishnamurthy S, Kyrish M, Benveniste AP, Yang W, Kortum RR (2015) Confocal fluorescence microscopy for rapid evaluation of invasive tumor cellularity of inflammatory breast carcinoma core needle biopsies. Breast Cancer Res Treat 149(1):303–310CrossRef
13.
go back to reference Wagnieres GA, Star WM, Wilson BC (1998) In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 68(5):603–632CrossRef Wagnieres GA, Star WM, Wilson BC (1998) In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 68(5):603–632CrossRef
14.
go back to reference Burke K, Brown E (2014) The use of second harmonic generation to image the extracellular matrix during tumor progression. Intravital 3(3):e9845091–e9845098CrossRef Burke K, Brown E (2014) The use of second harmonic generation to image the extracellular matrix during tumor progression. Intravital 3(3):e9845091–e9845098CrossRef
15.
go back to reference Evans CL, Xie XS (2008) Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem 1:833–909CrossRef Evans CL, Xie XS (2008) Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem 1:833–909CrossRef
16.
go back to reference Le TT, Huff TB, Cheng JX (2009) Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis. BMC Cancer 9:1471–2407CrossRef Le TT, Huff TB, Cheng JX (2009) Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis. BMC Cancer 9:1471–2407CrossRef
17.
go back to reference Bird DK, Yan L, Vrotsos KM, Eliceiri KW, Vaughan EM, Keely PJ, White JG, Ramanujam N (2005) Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res 65(19):8766–8773CrossRef Bird DK, Yan L, Vrotsos KM, Eliceiri KW, Vaughan EM, Keely PJ, White JG, Ramanujam N (2005) Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res 65(19):8766–8773CrossRef
18.
go back to reference Borst JW, Visser AJWG (2010) Fluorescence lifetime imaging microscopy in life sciences. Meas Sci Technol 21(10):1020021–10200221CrossRef Borst JW, Visser AJWG (2010) Fluorescence lifetime imaging microscopy in life sciences. Meas Sci Technol 21(10):1020021–10200221CrossRef
19.
go back to reference Tilli MT, Parrish AR, Cotarla I, Jones LP, Johnson MD, Furth PA (2008) Comparison of mouse mammary gland imaging techniques and applications: reflectance confocal microscopy, GFP imaging, and ultrasound. BMC Cancer 8(21):1–15 Tilli MT, Parrish AR, Cotarla I, Jones LP, Johnson MD, Furth PA (2008) Comparison of mouse mammary gland imaging techniques and applications: reflectance confocal microscopy, GFP imaging, and ultrasound. BMC Cancer 8(21):1–15
20.
go back to reference Georgakoudi I, Quinn PK (2012) Optical imaging using endogenous contrast to assess metabolic state. Annu Rev Biomed Eng 14:351–367CrossRef Georgakoudi I, Quinn PK (2012) Optical imaging using endogenous contrast to assess metabolic state. Annu Rev Biomed Eng 14:351–367CrossRef
21.
go back to reference Kortum RR, Muraca ES (1996) Quantitative optical spectroscopy for tissue diagnosis. Annu Rev Phys Chem 47:555–606CrossRef Kortum RR, Muraca ES (1996) Quantitative optical spectroscopy for tissue diagnosis. Annu Rev Phys Chem 47:555–606CrossRef
22.
go back to reference Dobbs JL, Mueller JL, Krishnamurthy S, Shin D, Kuerer H, Yang W, Ramanujam N, Kortum RR (2015) Micro-anatomical quantitative optical imaging: toward automated assessment of breast tissues. Breast Cancer Res 17(105):1–14 Dobbs JL, Mueller JL, Krishnamurthy S, Shin D, Kuerer H, Yang W, Ramanujam N, Kortum RR (2015) Micro-anatomical quantitative optical imaging: toward automated assessment of breast tissues. Breast Cancer Res 17(105):1–14
23.
go back to reference Dobbs J, Ding H, Benveniste AP, Kuerer HM, Krishnamurthy S, Yang W, Kortum RR (2013) Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia in fresh human breast tissue. J Biomed Opt 18:1060161–10601610CrossRef Dobbs J, Ding H, Benveniste AP, Kuerer HM, Krishnamurthy S, Yang W, Kortum RR (2013) Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia in fresh human breast tissue. J Biomed Opt 18:1060161–10601610CrossRef
24.
go back to reference Dobbs JL, Shin D, Krishnamurthy S, Kuerer H, Yang W, Richards-Kortum R (2016) Confocal fluorescence microscopy to evaluate changes in adipocytes in the tumor microenvironment associated with invasive ductal carcinoma and ductal carcinoma in situ. Int J Cancer 139:1140–1149CrossRef Dobbs JL, Shin D, Krishnamurthy S, Kuerer H, Yang W, Richards-Kortum R (2016) Confocal fluorescence microscopy to evaluate changes in adipocytes in the tumor microenvironment associated with invasive ductal carcinoma and ductal carcinoma in situ. Int J Cancer 139:1140–1149CrossRef
25.
go back to reference Ragazzi M, Piana S, Longo C, Castagnetti F, Foroni M, Ferrari G, Gardini G, Pellacani G (2014) Fluorescence confocal microscopy for pathologists. Mod Pathol 27:460–471CrossRef Ragazzi M, Piana S, Longo C, Castagnetti F, Foroni M, Ferrari G, Gardini G, Pellacani G (2014) Fluorescence confocal microscopy for pathologists. Mod Pathol 27:460–471CrossRef
26.
go back to reference Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP et al (2011) Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol 178(3):1221–1232CrossRef Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP et al (2011) Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol 178(3):1221–1232CrossRef
27.
go back to reference Mazumder N, Deka G, Wu WW, Gogoi A, Zhuo GY, Kao FJ (2017) Polarization resolved second harmonic microscopy. Methods 128:105–118CrossRef Mazumder N, Deka G, Wu WW, Gogoi A, Zhuo GY, Kao FJ (2017) Polarization resolved second harmonic microscopy. Methods 128:105–118CrossRef
28.
go back to reference Mazumder N, Qiu J, Foreman MR, Romero CM, Hu CW, Tsai HR, Tӧrӧk P, Kao FJ (2012) Polarization-resolved second harmonic generation microscopy with a four-channel stokes-polarimeter. Opt Express 20(13):14090–14099CrossRef Mazumder N, Qiu J, Foreman MR, Romero CM, Hu CW, Tsai HR, Tӧrӧk P, Kao FJ (2012) Polarization-resolved second harmonic generation microscopy with a four-channel stokes-polarimeter. Opt Express 20(13):14090–14099CrossRef
29.
go back to reference Mazumder N, Qiu J, Foreman MR, Romero CM, Török P, Kao FJ (2013) Stokes vector based polarization resolved second harmonic microscopy of starch granules. Biomed Opt Express 4(4):538–547CrossRef Mazumder N, Qiu J, Foreman MR, Romero CM, Török P, Kao FJ (2013) Stokes vector based polarization resolved second harmonic microscopy of starch granules. Biomed Opt Express 4(4):538–547CrossRef
30.
go back to reference Tilbury K, Campagnola PJ (2015) Applications of second-harmonic generation imaging microscopy in ovarian and breast cancer. Perspect Medicin Chem 7:21–32CrossRef Tilbury K, Campagnola PJ (2015) Applications of second-harmonic generation imaging microscopy in ovarian and breast cancer. Perspect Medicin Chem 7:21–32CrossRef
31.
go back to reference Keikhosravi A, Bredfeldt JS, Sagar AK, Eliceiri KW (2014) Second-harmonic generation imaging of cancer. Methods Cell Biol 123:531–546CrossRef Keikhosravi A, Bredfeldt JS, Sagar AK, Eliceiri KW (2014) Second-harmonic generation imaging of cancer. Methods Cell Biol 123:531–546CrossRef
32.
go back to reference Ambekar R, Lau TY, Walsh M, Bhargava R, Toussaint KC Jr (2012) Quantifying collagen structure in breast biopsies using second-harmonic generation imaging. Biomed Opt Express 3(9):2021–2035CrossRef Ambekar R, Lau TY, Walsh M, Bhargava R, Toussaint KC Jr (2012) Quantifying collagen structure in breast biopsies using second-harmonic generation imaging. Biomed Opt Express 3(9):2021–2035CrossRef
33.
go back to reference Wu PC, Hsieh YT, Tsai UZ, Liu MT (2015) In vivo quantification of the structural changes of collagens in a melanoma microenvironment with second and third harmonic generation microscopy. Sci Rep 5:8879CrossRef Wu PC, Hsieh YT, Tsai UZ, Liu MT (2015) In vivo quantification of the structural changes of collagens in a melanoma microenvironment with second and third harmonic generation microscopy. Sci Rep 5:8879CrossRef
34.
go back to reference Golaraei A, Kontenis L, Cisek R, Tokarz D, Done SJ, Wilson BC, Barzda V (2016) Changes of collagen ultrastructure in breast cancer tissue determined by second-harmonic generation double Stokes-Mueller polarimetric microscopy. Biomed Opt Express 7:4058–4068CrossRef Golaraei A, Kontenis L, Cisek R, Tokarz D, Done SJ, Wilson BC, Barzda V (2016) Changes of collagen ultrastructure in breast cancer tissue determined by second-harmonic generation double Stokes-Mueller polarimetric microscopy. Biomed Opt Express 7:4058–4068CrossRef
35.
go back to reference Chowdary PD, Benalcazar WA, Jiang Z, Chaney EJ, Marks DL, Gruebele M, Boppart SA (2010) Molecular histopathology by spectrally reconstructed nonlinear interferometric vibrational imaging. Cancer Res 70:9562–9569CrossRef Chowdary PD, Benalcazar WA, Jiang Z, Chaney EJ, Marks DL, Gruebele M, Boppart SA (2010) Molecular histopathology by spectrally reconstructed nonlinear interferometric vibrational imaging. Cancer Res 70:9562–9569CrossRef
36.
go back to reference Tu H, Boppart SA (2014) Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation. J Biophotonics 7(1–2):9–22CrossRef Tu H, Boppart SA (2014) Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation. J Biophotonics 7(1–2):9–22CrossRef
37.
go back to reference Kong K, Kendall C, Stone N, Notingher I (2015) Raman spectroscopy for medical diagnostics — from in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev 89:121–134CrossRef Kong K, Kendall C, Stone N, Notingher I (2015) Raman spectroscopy for medical diagnostics — from in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev 89:121–134CrossRef
38.
go back to reference Lee M, Downes A, Chau Y, Serrels B, Hastie N, Elfick A, Brunton V, Frame M, Serrels A (2015) In vivo imaging of the tumor and its associated microenvironment using combined CARS / 2-photon microscopy. Intravital 4:e1055430CrossRef Lee M, Downes A, Chau Y, Serrels B, Hastie N, Elfick A, Brunton V, Frame M, Serrels A (2015) In vivo imaging of the tumor and its associated microenvironment using combined CARS / 2-photon microscopy. Intravital 4:e1055430CrossRef
39.
go back to reference Yang Y, Li F, Gao L, Wang Z, Thrall MJ, Shen SS, Wong KK, Wong STC (2011) Differential diagnosis of breast cancer using quantitative, label-free and molecular vibrational imaging. Biomed Opt Express 2(8):2160–2174CrossRef Yang Y, Li F, Gao L, Wang Z, Thrall MJ, Shen SS, Wong KK, Wong STC (2011) Differential diagnosis of breast cancer using quantitative, label-free and molecular vibrational imaging. Biomed Opt Express 2(8):2160–2174CrossRef
40.
go back to reference Potcoava MC, Futia GL, Aughenbaugh J, Schlaepfer IR, Gibson EA (2014) Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells. J Biomed Opt 19(11):1116051–11160510CrossRef Potcoava MC, Futia GL, Aughenbaugh J, Schlaepfer IR, Gibson EA (2014) Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells. J Biomed Opt 19(11):1116051–11160510CrossRef
41.
go back to reference Provenzano PP, Eliceiri KW, Yan L, Nguema NN, Conklin MW, Inman DR, Keely PJ (2008) Nonlinear optical imaging of cellular processes in breast cancer. Microsc Microanal 14(6):532–548CrossRef Provenzano PP, Eliceiri KW, Yan L, Nguema NN, Conklin MW, Inman DR, Keely PJ (2008) Nonlinear optical imaging of cellular processes in breast cancer. Microsc Microanal 14(6):532–548CrossRef
42.
go back to reference Kao JF, Deka G, Mazumder N (2015) Cellular autofluroscence detection through FLIM/FRET microscopy. The current trends of optics and photonics. Top Appl Phys 129:471–482 (2015) (Springer Netherlands). Online ISBN 978–94–017-9392-6CrossRef Kao JF, Deka G, Mazumder N (2015) Cellular autofluroscence detection through FLIM/FRET microscopy. The current trends of optics and photonics. Top Appl Phys 129:471–482 (2015) (Springer Netherlands). Online ISBN 978–94–017-9392-6CrossRef
43.
go back to reference Periasamy A, Mazumder N, Sun Y, Christopher KG, Day RN (2015) FRET microscopy: basics, issues and advantages of FLIM-FRET imaging. Springer Ser Chem Phys 111:249–276 Advanced Time-Correlated Single Photon Counting Applications, Springer International Publishing Series ISSN 0172–6218CrossRef Periasamy A, Mazumder N, Sun Y, Christopher KG, Day RN (2015) FRET microscopy: basics, issues and advantages of FLIM-FRET imaging. Springer Ser Chem Phys 111:249–276 Advanced Time-Correlated Single Photon Counting Applications, Springer International Publishing Series ISSN 0172–6218CrossRef
44.
go back to reference Sud D, Zhong W, Beer DG, Mycek M-A (2006) Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models. Opt Express 14(10):4412–4426CrossRef Sud D, Zhong W, Beer DG, Mycek M-A (2006) Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models. Opt Express 14(10):4412–4426CrossRef
45.
go back to reference Provenzano PP, Eliceiri KW, Keely PJ (2009) Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin Exp Metastasis 26(4):357–370CrossRef Provenzano PP, Eliceiri KW, Keely PJ (2009) Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin Exp Metastasis 26(4):357–370CrossRef
46.
go back to reference Mazumder N, Lyn RK, Singaravelu R, Ridsdale A, Moffatt DJ, Hu CW, Tsai HR, McLauchlan J, Stolow A, Kao FJ, Pezacki JP (2013) Fluorescence lifetime imaging of alterations to cellular metabolism by domain 2 of the hepatitis C virus core protein. PLoS One 8(6):1–10CrossRef Mazumder N, Lyn RK, Singaravelu R, Ridsdale A, Moffatt DJ, Hu CW, Tsai HR, McLauchlan J, Stolow A, Kao FJ, Pezacki JP (2013) Fluorescence lifetime imaging of alterations to cellular metabolism by domain 2 of the hepatitis C virus core protein. PLoS One 8(6):1–10CrossRef
47.
go back to reference Tomsia KT, Anwer AG, Cahill MA, Madlum KN, Maki AM, Baker MS, Goldys EM (2014) Multiphoton fluorescence lifetime imaging microscopy reveals free-to-bound NADH ratio changes associated with metabolic inhibition. J Biomed Opt 19(8):086016CrossRef Tomsia KT, Anwer AG, Cahill MA, Madlum KN, Maki AM, Baker MS, Goldys EM (2014) Multiphoton fluorescence lifetime imaging microscopy reveals free-to-bound NADH ratio changes associated with metabolic inhibition. J Biomed Opt 19(8):086016CrossRef
48.
go back to reference Hou J, Wright HJ, Chan N, Tran R, Razorenova OV, Potma EO, Tromberg BJ (2016) Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption. J Biomed Opt 21:0605031–0605033CrossRef Hou J, Wright HJ, Chan N, Tran R, Razorenova OV, Potma EO, Tromberg BJ (2016) Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption. J Biomed Opt 21:0605031–0605033CrossRef
49.
go back to reference Xiao A, Gibbons AE, Luker KE, Luker GD (2015) Fluorescence lifetime imaging of apoptosis. Tomography 1(2):115–124CrossRef Xiao A, Gibbons AE, Luker KE, Luker GD (2015) Fluorescence lifetime imaging of apoptosis. Tomography 1(2):115–124CrossRef
50.
go back to reference Szulczewski JM, Inman DR, Entenberg D, Ponik SM, Ghiso JA, Castracane J, Condeelis J, Eliceiri KW, Keely PJ (2016) In vivo visualization of stromal macrophages via label-free FLIM-based metabolite imaging. Sci Rep 6:1–9CrossRef Szulczewski JM, Inman DR, Entenberg D, Ponik SM, Ghiso JA, Castracane J, Condeelis J, Eliceiri KW, Keely PJ (2016) In vivo visualization of stromal macrophages via label-free FLIM-based metabolite imaging. Sci Rep 6:1–9CrossRef
Metadata
Title
Types of advanced optical microscopy techniques for breast cancer research: a review
Authors
Aparna Dravid U.
Nirmal Mazumder
Publication date
01-12-2018
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 9/2018
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-018-2659-6

Other articles of this Issue 9/2018

Lasers in Medical Science 9/2018 Go to the issue