Skip to main content
Top
Published in: Journal of Neuro-Oncology 2/2008

01-01-2008 | lab. Investigation-human/animal tissue

Type I collagen is overexpressed in medulloblastoma as a component of tumor microenvironment

Authors: Yu Liang, Maximilian Diehn, Andrew W. Bollen, Mark A. Israel, Nalin Gupta

Published in: Journal of Neuro-Oncology | Issue 2/2008

Login to get access

Abstract

Medulloblastoma is the most common malignant brain tumor of children, and more specific and effective therapeutic management needs to be developed to improve upon existing survival rates and to avoid side-effects from current treatment. Gain of chromosome seven is the most frequent chromosome copy number aberration in medulloblastoma, suggesting that overexpression of genes on chromosome seven might be important for the pathogenesis of medulloblastoma. We used microarrays to identify chromosome seven genes overexpressed in medulloblastoma specimens, and validated using data from published gene expression datasets. The gene encoding the alpha 2 subunit of type I collagen, COL1A2, was overexpressed in all three datasets. Immunohistochemistry of tumor tissues revealed type I collagen in the leptomeninges, and in the extracellular matrix surrounding blood vessels and medulloblastoma cells. Expression of both type I collagen and the β1 subunit of integrin, a subunit of a known type I collagen receptor, localized to the same area of medulloblastoma. Adherence of D283 medulloblastoma cells to type I collagen matrix in vitro depends on the β1 subunit of integrin. Because medulloblastoma is characteristic of high vascularity, and because inhibition of type I collagen synthesis has been shown to suppress angiogenesis and tumor growth, our data suggest that type I collagen might be a potential therapeutic target for treating medulloblastoma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Murray T, Samuels A (2003) Cancer Statistics. CA Cancer J Clin 53:5–26PubMed Jemal A, Murray T, Samuels A (2003) Cancer Statistics. CA Cancer J Clin 53:5–26PubMed
2.
go back to reference Rutkowski S (2006) Current treatment approaches to early childhood medulloblastoma. Expert Rev Neurother 6(8):1211–1221PubMedCrossRef Rutkowski S (2006) Current treatment approaches to early childhood medulloblastoma. Expert Rev Neurother 6(8):1211–1221PubMedCrossRef
3.
go back to reference Evans AE, Jenkin RD, Sposto R et al (1990) The treatment of medulloblastoma. Results of a prospective randomized trial of radiation therapy with and without CCNU, vincristine, and prednisone. J Neurosurg 72(4):572–582PubMedCrossRef Evans AE, Jenkin RD, Sposto R et al (1990) The treatment of medulloblastoma. Results of a prospective randomized trial of radiation therapy with and without CCNU, vincristine, and prednisone. J Neurosurg 72(4):572–582PubMedCrossRef
4.
go back to reference Packer RJ, Sutton LN, Elterman R et al (1994) Outcome for children with medulloblastoma treated with radiation and cisplatin, CCNU, and vincristine chemotherapy. J Neurosurg 81(5):690–698PubMed Packer RJ, Sutton LN, Elterman R et al (1994) Outcome for children with medulloblastoma treated with radiation and cisplatin, CCNU, and vincristine chemotherapy. J Neurosurg 81(5):690–698PubMed
5.
go back to reference Zeltzer PM, Boyett JM, Finlay JL et al (1999) Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the Children’s Cancer Group 921 randomized phase III study. J Clin Oncol 17(3):832–845PubMed Zeltzer PM, Boyett JM, Finlay JL et al (1999) Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the Children’s Cancer Group 921 randomized phase III study. J Clin Oncol 17(3):832–845PubMed
6.
go back to reference Marino S (2005) Medulloblastoma: developmental mechanisms out of control. Trends Mol Med 11(1):17–22PubMedCrossRef Marino S (2005) Medulloblastoma: developmental mechanisms out of control. Trends Mol Med 11(1):17–22PubMedCrossRef
7.
go back to reference MacDonald TJ, Brown KM, LaFleur B et al (2001) Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet 29(2):143–152PubMedCrossRef MacDonald TJ, Brown KM, LaFleur B et al (2001) Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet 29(2):143–152PubMedCrossRef
8.
go back to reference Dirks PB, Harris L, Hoffman HJ et al (1996) Supratentorial primitive neuroectodermal tumors in children. J Neurooncol 29(1):75–84PubMedCrossRef Dirks PB, Harris L, Hoffman HJ et al (1996) Supratentorial primitive neuroectodermal tumors in children. J Neurooncol 29(1):75–84PubMedCrossRef
9.
go back to reference Albright AL, Wisoff JH, Zeltzer P et al (1995) Prognostic factors in children with supratentorial (nonpineal) primitive neuroectodermal tumors. A neurosurgical perspective from the Children’s Cancer Group. Pediatr Neurosurg 22(1):1–7PubMed Albright AL, Wisoff JH, Zeltzer P et al (1995) Prognostic factors in children with supratentorial (nonpineal) primitive neuroectodermal tumors. A neurosurgical perspective from the Children’s Cancer Group. Pediatr Neurosurg 22(1):1–7PubMed
10.
go back to reference Cohen BH, Zeltzer PM, Boyett JM et al (1995) Prognostic factors and treatment results for supratentorial primitive neuroectodermal tumors in children using radiation and chemotherapy: a Childrens Cancer Group randomized trial. J Clin Oncol 13(7):1687–1696PubMed Cohen BH, Zeltzer PM, Boyett JM et al (1995) Prognostic factors and treatment results for supratentorial primitive neuroectodermal tumors in children using radiation and chemotherapy: a Childrens Cancer Group randomized trial. J Clin Oncol 13(7):1687–1696PubMed
11.
go back to reference Huber H, Eggert A, Janss AJ et al (2001) Angiogenic profile of childhood primitive neuroectodermal brain tumours/medulloblastomas. Eur J Cancer 37(16):2064–2072PubMedCrossRef Huber H, Eggert A, Janss AJ et al (2001) Angiogenic profile of childhood primitive neuroectodermal brain tumours/medulloblastomas. Eur J Cancer 37(16):2064–2072PubMedCrossRef
12.
go back to reference Grotzer MA, Wiewrodt R, Janss AJ et al (2001) High microvessel density in primitive neuroectodermal brain tumors of childhood. Neuropediatrics 32(2):75–79PubMedCrossRef Grotzer MA, Wiewrodt R, Janss AJ et al (2001) High microvessel density in primitive neuroectodermal brain tumors of childhood. Neuropediatrics 32(2):75–79PubMedCrossRef
13.
go back to reference Pomeroy SL, Tamayo P, Gaasenbeek M et al (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415(6870):436–442PubMedCrossRef Pomeroy SL, Tamayo P, Gaasenbeek M et al (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415(6870):436–442PubMedCrossRef
14.
go back to reference Russo C, Pellarin M, Tingby O et al (1999) Comparative genomic hybridization in patients with supratentorial and infratentorial primitive neuroectodermal tumors. Cancer 86(2):331–339PubMedCrossRef Russo C, Pellarin M, Tingby O et al (1999) Comparative genomic hybridization in patients with supratentorial and infratentorial primitive neuroectodermal tumors. Cancer 86(2):331–339PubMedCrossRef
15.
go back to reference Burnett ME, White EC, Sih S, von Haken MS, Cogen PH (1997) Chromosome arm 17p deletion analysis reveals molecular genetic heterogeneity in supratentorial and infratentorial primitive neuroectodermal tumors of the central nervous system. Cancer Genet Cytogenet 97(1):25–31PubMedCrossRef Burnett ME, White EC, Sih S, von Haken MS, Cogen PH (1997) Chromosome arm 17p deletion analysis reveals molecular genetic heterogeneity in supratentorial and infratentorial primitive neuroectodermal tumors of the central nervous system. Cancer Genet Cytogenet 97(1):25–31PubMedCrossRef
16.
go back to reference McCabe MG, Ichimura K, Liu L et al (2006) High-resolution array-based comparative genomic hybridization of medulloblastomas and supratentorial primitive neuroectodermal tumors. J Neuropathol Exp Neurol 65(6):549–561PubMed McCabe MG, Ichimura K, Liu L et al (2006) High-resolution array-based comparative genomic hybridization of medulloblastomas and supratentorial primitive neuroectodermal tumors. J Neuropathol Exp Neurol 65(6):549–561PubMed
17.
go back to reference Bayani J, Zielenska M, Marrano P et al (2000) Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumors by using conventional banding, comparative genomic hybridization, and spectral karyotyping. J Neurosurg 93(3):437–448PubMed Bayani J, Zielenska M, Marrano P et al (2000) Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumors by using conventional banding, comparative genomic hybridization, and spectral karyotyping. J Neurosurg 93(3):437–448PubMed
18.
go back to reference Reardon DA, Michalkiewicz E, Boyett JM et al (1997) Extensive genomic abnormalities in childhood medulloblastoma by comparative genomic hybridization. Cancer Res 57(18):4042–4047PubMed Reardon DA, Michalkiewicz E, Boyett JM et al (1997) Extensive genomic abnormalities in childhood medulloblastoma by comparative genomic hybridization. Cancer Res 57(18):4042–4047PubMed
19.
go back to reference Ramaswamy S, Tamayo P, Rifkin R et al (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A 98(26):15149–15154PubMedCrossRef Ramaswamy S, Tamayo P, Rifkin R et al (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A 98(26):15149–15154PubMedCrossRef
20.
go back to reference Boon K, Osorio EC, Greenhut SF et al (2002) An anatomy of normal and malignant gene expression. Proc Natl Acad Sci U S A 99(17):11287–11292PubMedCrossRef Boon K, Osorio EC, Greenhut SF et al (2002) An anatomy of normal and malignant gene expression. Proc Natl Acad Sci U S A 99(17):11287–11292PubMedCrossRef
21.
go back to reference Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270(5235):484–487PubMedCrossRef Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270(5235):484–487PubMedCrossRef
22.
go back to reference Karsenty G, Park RW (1995) Regulation of type I collagen genes expression. Int Rev Immunol 12(2–4):177–185PubMedCrossRef Karsenty G, Park RW (1995) Regulation of type I collagen genes expression. Int Rev Immunol 12(2–4):177–185PubMedCrossRef
23.
go back to reference Karsenty G, de Crombrugghe B (1991) Conservation of binding sites for regulatory factors in the coordinately expressed alpha 1 (I) and alpha 2 (I) collagen promoters. Biochem Biophys Res Commun 177(1):538–544PubMedCrossRef Karsenty G, de Crombrugghe B (1991) Conservation of binding sites for regulatory factors in the coordinately expressed alpha 1 (I) and alpha 2 (I) collagen promoters. Biochem Biophys Res Commun 177(1):538–544PubMedCrossRef
24.
go back to reference Werb Z, Tremble PM, Behrendtsen O, Crowley E, Damsky CH (1989) Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol 109(2):877–889PubMedCrossRef Werb Z, Tremble PM, Behrendtsen O, Crowley E, Damsky CH (1989) Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol 109(2):877–889PubMedCrossRef
25.
go back to reference Wayner EA, Gil SG, Murphy GF, Wilke MS, Carter WG (1993) Epiligrin, a component of epithelial basement membranes, is an adhesive ligand for alpha 3 beta 1 positive T lymphocytes. J Cell Biol 121(5):1141–1152PubMedCrossRef Wayner EA, Gil SG, Murphy GF, Wilke MS, Carter WG (1993) Epiligrin, a component of epithelial basement membranes, is an adhesive ligand for alpha 3 beta 1 positive T lymphocytes. J Cell Biol 121(5):1141–1152PubMedCrossRef
26.
go back to reference Quackenbush J (2006) Microarray analysis and tumor classification. N Engl J Med 354(23):2463–2472PubMedCrossRef Quackenbush J (2006) Microarray analysis and tumor classification. N Engl J Med 354(23):2463–2472PubMedCrossRef
27.
go back to reference Liang Y, Diehn M, Watson N et al (2005) Gene expression profiling reveals clinically distinct subtypes of glioblastoma multiforme. Proc Natl Acad Sci U S A 102(16):5814–5819PubMedCrossRef Liang Y, Diehn M, Watson N et al (2005) Gene expression profiling reveals clinically distinct subtypes of glioblastoma multiforme. Proc Natl Acad Sci U S A 102(16):5814–5819PubMedCrossRef
28.
go back to reference Liang Y, Bollen AW, Nicholas MK, Gupta N (2005) Id4 and FABP7 are preferentially expressed in cells with astrocytic features in oligodendrogliomas and oligoastrocytomas. BMC Clin Pathol 5:6PubMedCrossRef Liang Y, Bollen AW, Nicholas MK, Gupta N (2005) Id4 and FABP7 are preferentially expressed in cells with astrocytic features in oligodendrogliomas and oligoastrocytomas. BMC Clin Pathol 5:6PubMedCrossRef
29.
go back to reference Liang Y, Bollen AW, Aldape KD, Gupta N (2006) Nuclear FABP7 immunoreactivity is preferentially expressed in infiltrative glioma and is associated with poor prognosis in EGFR-overexpressing glioblastoma. BMC Cancer 6:97PubMedCrossRef Liang Y, Bollen AW, Aldape KD, Gupta N (2006) Nuclear FABP7 immunoreactivity is preferentially expressed in infiltrative glioma and is associated with poor prognosis in EGFR-overexpressing glioblastoma. BMC Cancer 6:97PubMedCrossRef
30.
go back to reference Montesano R, Orci L, Vassalli P (1983) In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J Cell Biol 97(5 Pt 1):1648–1652PubMedCrossRef Montesano R, Orci L, Vassalli P (1983) In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J Cell Biol 97(5 Pt 1):1648–1652PubMedCrossRef
31.
go back to reference Jackson CJ, Jenkins KL (1991) Type I collagen fibrils promote rapid vascular tube formation upon contact with the apical side of cultured endothelium. Exp Cell Res 192(1):319–323PubMedCrossRef Jackson CJ, Jenkins KL (1991) Type I collagen fibrils promote rapid vascular tube formation upon contact with the apical side of cultured endothelium. Exp Cell Res 192(1):319–323PubMedCrossRef
32.
go back to reference Elkin M, Miao HQ, Nagler A et al (2000) Halofuginone: a potent inhibitor of critical steps in angiogenesis progression. Faseb J 14(15):2477–2485PubMedCrossRef Elkin M, Miao HQ, Nagler A et al (2000) Halofuginone: a potent inhibitor of critical steps in angiogenesis progression. Faseb J 14(15):2477–2485PubMedCrossRef
33.
go back to reference Abramovitch R, Dafni H, Neeman M, Nagler A, Pines M (1999) Inhibition of neovascularization and tumor growth, and facilitation of wound repair, by halofuginone, an inhibitor of collagen type I synthesis. Neoplasia 1(4):321–329PubMedCrossRef Abramovitch R, Dafni H, Neeman M, Nagler A, Pines M (1999) Inhibition of neovascularization and tumor growth, and facilitation of wound repair, by halofuginone, an inhibitor of collagen type I synthesis. Neoplasia 1(4):321–329PubMedCrossRef
34.
go back to reference Elkin M, Ariel I, Miao HQ et al (1999) Inhibition of bladder carcinoma angiogenesis, stromal support, and tumor growth by halofuginone. Cancer Res 59(16):4111–4118PubMed Elkin M, Ariel I, Miao HQ et al (1999) Inhibition of bladder carcinoma angiogenesis, stromal support, and tumor growth by halofuginone. Cancer Res 59(16):4111–4118PubMed
35.
go back to reference Gross DJ, Reibstein I, Weiss L et al (2003) Treatment with halofuginone results in marked growth inhibition of a von Hippel-Lindau pheochromocytoma in vivo. Clin Cancer Res 9(10 Pt 1):3788–3793PubMed Gross DJ, Reibstein I, Weiss L et al (2003) Treatment with halofuginone results in marked growth inhibition of a von Hippel-Lindau pheochromocytoma in vivo. Clin Cancer Res 9(10 Pt 1):3788–3793PubMed
36.
go back to reference White DJ, Puranen S, Johnson MS, Heino J (2004) The collagen receptor subfamily of the integrins. Int J Biochem Cell Biol 36(8):1405–1410PubMedCrossRef White DJ, Puranen S, Johnson MS, Heino J (2004) The collagen receptor subfamily of the integrins. Int J Biochem Cell Biol 36(8):1405–1410PubMedCrossRef
37.
go back to reference Gamble JR, Matthias LJ, Meyer G et al (1993) Regulation of in vitro capillary tube formation by anti-integrin antibodies. J Cell Biol 121(4):931–943PubMedCrossRef Gamble JR, Matthias LJ, Meyer G et al (1993) Regulation of in vitro capillary tube formation by anti-integrin antibodies. J Cell Biol 121(4):931–943PubMedCrossRef
38.
go back to reference Guo W, Giancotti FG (2004) Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5(10):816–826PubMedCrossRef Guo W, Giancotti FG (2004) Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5(10):816–826PubMedCrossRef
39.
go back to reference Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L et al (1996) Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature 379(6560):91–96PubMedCrossRef Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L et al (1996) Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature 379(6560):91–96PubMedCrossRef
40.
go back to reference Wu C, Dedhar S (2001) Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol 155(4):505–510PubMedCrossRef Wu C, Dedhar S (2001) Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol 155(4):505–510PubMedCrossRef
41.
go back to reference MacDonald TJ, Taga T, Shimada H et al (2001) Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha(v) integrin antagonist. Neurosurgery 48(1):151–157PubMedCrossRef MacDonald TJ, Taga T, Shimada H et al (2001) Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha(v) integrin antagonist. Neurosurgery 48(1):151–157PubMedCrossRef
42.
go back to reference Taga T, Suzuki A, Gonzalez-Gomez I et al (2002) alpha v-Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int J Cancer 98(5):690–697PubMedCrossRef Taga T, Suzuki A, Gonzalez-Gomez I et al (2002) alpha v-Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int J Cancer 98(5):690–697PubMedCrossRef
43.
go back to reference Rutka JT, Giblin J, Dougherty DV et al (1986) An ultrastructural and immunocytochemical analysis of leptomeningeal and meningioma cultures. J Neuropathol Exp Neurol 45(3):285–303PubMedCrossRef Rutka JT, Giblin J, Dougherty DV et al (1986) An ultrastructural and immunocytochemical analysis of leptomeningeal and meningioma cultures. J Neuropathol Exp Neurol 45(3):285–303PubMedCrossRef
44.
45.
go back to reference Ozer E, Sarialioglu F, Cetingoz R et al (2004) Prognostic significance of anaplasia and angiogenesis in childhood medulloblastoma: a pediatric oncology group study. Pathol Res Pract 200(7–8):501–509PubMedCrossRef Ozer E, Sarialioglu F, Cetingoz R et al (2004) Prognostic significance of anaplasia and angiogenesis in childhood medulloblastoma: a pediatric oncology group study. Pathol Res Pract 200(7–8):501–509PubMedCrossRef
46.
go back to reference Chung DH, Lee JI, Kook MC et al (1998) ILK (beta1-integrin-linked protein kinase): a novel immunohistochemical marker for Ewing’s sarcoma and primitive neuroectodermal tumour. Virchows Arch 433(2):113–117PubMedCrossRef Chung DH, Lee JI, Kook MC et al (1998) ILK (beta1-integrin-linked protein kinase): a novel immunohistochemical marker for Ewing’s sarcoma and primitive neuroectodermal tumour. Virchows Arch 433(2):113–117PubMedCrossRef
Metadata
Title
Type I collagen is overexpressed in medulloblastoma as a component of tumor microenvironment
Authors
Yu Liang
Maximilian Diehn
Andrew W. Bollen
Mark A. Israel
Nalin Gupta
Publication date
01-01-2008
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 2/2008
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-007-9457-5

Other articles of this Issue 2/2008

Journal of Neuro-Oncology 2/2008 Go to the issue