Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2023

Open Access 01-12-2023 | Type 2 Diabetes | Research

Olive oil consumption, plasma metabolites, and risk of type 2 diabetes and cardiovascular disease

Authors: Jesús F. García-Gavilán, Nancy Babio, Estefanía Toledo, Zhila Semnani-Azad, Cristina Razquin, Courtney Dennis, Amy Deik, Dolores Corella, Ramón Estruch, Emilio Ros, Montserrat Fitó, Fernando Arós, Miquel Fiol, José Lapetra, Rosa Lamuela-Raventos, Clary Clish, Miguel Ruiz-Canela, Miguel Ángel Martínez-González, Frank Hu, Jordi Salas-Salvadó, Marta Guasch-Ferré

Published in: Cardiovascular Diabetology | Issue 1/2023

Login to get access

Abstract

Background

Olive oil consumption has been inversely associated with the risk of type 2 diabetes (T2D) and cardiovascular disease (CVD). However, the impact of olive oil consumption on plasma metabolites remains poorly understood. This study aims to identify plasma metabolites related to total and specific types of olive oil consumption, and to assess the prospective associations of the identified multi-metabolite profiles with the risk of T2D and CVD.

Methods

The discovery population included 1837 participants at high cardiovascular risk from the PREvención con DIeta MEDiterránea (PREDIMED) trial with available metabolomics data at baseline. Olive oil consumption was determined through food-frequency questionnaires (FFQ) and adjusted for total energy. A total of 1522 participants also had available metabolomics data at year 1 and were used as the internal validation sample. Plasma metabolomics analyses were performed using LC–MS. Cross-sectional associations between 385 known candidate metabolites and olive oil consumption were assessed using elastic net regression analysis. A 10-cross-validation (CV) procedure was used, and Pearson correlation coefficients were assessed between metabolite-weighted models and FFQ-derived olive oil consumption in each pair of training–validation data sets within the discovery sample. We further estimated the prospective associations of the identified plasma multi-metabolite profile with incident T2D and CVD using multivariable Cox regression models.

Results

We identified a metabolomic signature for the consumption of total olive oil (with 74 metabolites), VOO (with 78 metabolites), and COO (with 17 metabolites), including several lipids, acylcarnitines, and amino acids. 10-CV Pearson correlation coefficients between total olive oil consumption derived from FFQs and the multi-metabolite profile were 0.40 (95% CI 0.37, 0.44) and 0.27 (95% CI 0.22, 0.31) for the discovery and validation sample, respectively. We identified several overlapping and distinct metabolites according to the type of olive oil consumed. The baseline metabolite profiles of total and extra virgin olive oil were inversely associated with CVD incidence (HR per 1SD: 0.79; 95% CI 0.67, 0.92 for total olive oil and 0.70; 0.59, 0.83 for extra virgin olive oil) after adjustment for confounders. However, no significant associations were observed between these metabolite profiles and T2D incidence.

Conclusions

This study reveals a panel of plasma metabolites linked to the consumption of total and specific types of olive oil. The metabolite profiles of total olive oil consumption and extra virgin olive oil were associated with a decreased risk of incident CVD in a high cardiovascular-risk Mediterranean population, though no associations were observed with T2D incidence.
Trial registration: The PREDIMED trial was registered at ISRCTN (http://​www.​isrctn.​com/​, ISRCTN35739639).
Appendix
Available only for authorised users
Literature
1.
go back to reference Gaforio, Visioli, Alarcón-de-la-Lastra, Castañer, Delgado-Rodríguez, Fitó, et al. Virgin Olive Oil and Health: Summary of the III International Conference on Virgin Olive Oil and Health Consensus Report, JAEN (Spain) 2018. Nutrients. 2019 Sep 1;11(9):2039. Gaforio, Visioli, Alarcón-de-la-Lastra, Castañer, Delgado-Rodríguez, Fitó, et al. Virgin Olive Oil and Health: Summary of the III International Conference on Virgin Olive Oil and Health Consensus Report, JAEN (Spain) 2018. Nutrients. 2019 Sep 1;11(9):2039.
2.
go back to reference Ros E. Olive oil and CVD: accruing evidence of a protective effect. Br J Nutr. 2012;108(11):1931–3.PubMedCrossRef Ros E. Olive oil and CVD: accruing evidence of a protective effect. Br J Nutr. 2012;108(11):1931–3.PubMedCrossRef
3.
go back to reference Martínez-González MA, Sayón-Orea C, Bullón-Vela V, Bes-Rastrollo M, Rodríguez-Artalejo F, Yusta-Boyo MJ, et al. Effect of olive oil consumption on cardiovascular disease, cancer, type 2 diabetes, and all-cause mortality: a systematic review and meta-analysis. Clin Nutr. 2022;41(12):2659–82.PubMedCrossRef Martínez-González MA, Sayón-Orea C, Bullón-Vela V, Bes-Rastrollo M, Rodríguez-Artalejo F, Yusta-Boyo MJ, et al. Effect of olive oil consumption on cardiovascular disease, cancer, type 2 diabetes, and all-cause mortality: a systematic review and meta-analysis. Clin Nutr. 2022;41(12):2659–82.PubMedCrossRef
4.
go back to reference Schwingshackl L, Lampousi AM, Portillo MP, Romaguera D, Hoffmann G, Boeing H. Olive oil in the prevention and management of type 2 diabetes mellitus: a systematic review and meta-analysis of cohort studies and intervention trials. Nutr Diabetes. 2017;7(4):e262–e262.PubMedPubMedCentralCrossRef Schwingshackl L, Lampousi AM, Portillo MP, Romaguera D, Hoffmann G, Boeing H. Olive oil in the prevention and management of type 2 diabetes mellitus: a systematic review and meta-analysis of cohort studies and intervention trials. Nutr Diabetes. 2017;7(4):e262–e262.PubMedPubMedCentralCrossRef
5.
go back to reference Guasch-Ferré M, Li Y, Willett WC, Sun Q, Sampson L, Salas-Salvadó J, et al. Consumption of olive oil and risk of total and cause-specific mortality among U.S. Adults J Am Coll Cardiol. 2022;79(2):101–12.PubMedCrossRef Guasch-Ferré M, Li Y, Willett WC, Sun Q, Sampson L, Salas-Salvadó J, et al. Consumption of olive oil and risk of total and cause-specific mortality among U.S. Adults J Am Coll Cardiol. 2022;79(2):101–12.PubMedCrossRef
6.
go back to reference Markellos C, Ourailidou ME, Gavriatopoulou M, Halvatsiotis P, Sergentanis TN, Psaltopoulou T. Olive oil intake and cancer risk: A systematic review and meta-analysis. PLoS ONE. 2022;17(1):e0261649.PubMedPubMedCentralCrossRef Markellos C, Ourailidou ME, Gavriatopoulou M, Halvatsiotis P, Sergentanis TN, Psaltopoulou T. Olive oil intake and cancer risk: A systematic review and meta-analysis. PLoS ONE. 2022;17(1):e0261649.PubMedPubMedCentralCrossRef
7.
go back to reference Schwingshackl L, Krause M, Schmucker C, Hoffmann G, Rücker G, Meerpohl JJ. Impact of different types of olive oil on cardiovascular risk factors: a systematic review and network meta-analysis. Nutr Metab Cardiovasc Dis. 2019;29(10):1030–9.PubMedCrossRef Schwingshackl L, Krause M, Schmucker C, Hoffmann G, Rücker G, Meerpohl JJ. Impact of different types of olive oil on cardiovascular risk factors: a systematic review and network meta-analysis. Nutr Metab Cardiovasc Dis. 2019;29(10):1030–9.PubMedCrossRef
8.
go back to reference Yubero-Serrano EM, Lopez-Moreno J, Gomez-Delgado F, Lopez-Miranda J. Extra virgin olive oil: more than a healthy fat. Eur J Clin Nutr. 2019;72(S1):8–17.PubMedCrossRef Yubero-Serrano EM, Lopez-Moreno J, Gomez-Delgado F, Lopez-Miranda J. Extra virgin olive oil: more than a healthy fat. Eur J Clin Nutr. 2019;72(S1):8–17.PubMedCrossRef
9.
go back to reference Hernáez Á, Fernández-Castillejo S, Farràs M, Catalán Ú, Subirana I, Montes R, et al. Olive oil polyphenols enhance high-density lipoprotein function in humans. Arterioscler Thromb Vasc Biol. 2014;34(9):2115–9.PubMedCrossRef Hernáez Á, Fernández-Castillejo S, Farràs M, Catalán Ú, Subirana I, Montes R, et al. Olive oil polyphenols enhance high-density lipoprotein function in humans. Arterioscler Thromb Vasc Biol. 2014;34(9):2115–9.PubMedCrossRef
10.
go back to reference Fernández-Castillejo S, Pedret A, Catalán Ú, Valls R, Farràs M, Rubió L, et al. Virgin olive oil phenolic compounds modulate the HDL lipidome in hypercholesterolaemic subjects: a lipidomic analysis of the VOHF study. Mol Nutr Food Res. 2021;65(9):2001192.PubMedPubMedCentralCrossRef Fernández-Castillejo S, Pedret A, Catalán Ú, Valls R, Farràs M, Rubió L, et al. Virgin olive oil phenolic compounds modulate the HDL lipidome in hypercholesterolaemic subjects: a lipidomic analysis of the VOHF study. Mol Nutr Food Res. 2021;65(9):2001192.PubMedPubMedCentralCrossRef
11.
go back to reference Martinez-Gonzalez MA, Corella D, Salas-Salvado J, Ros E, Covas MI, Fiol M, et al. Cohort profile: design and methods of the PREDIMED study. Int J Epidemiol. 2012;41(2):377–85.PubMedCrossRef Martinez-Gonzalez MA, Corella D, Salas-Salvado J, Ros E, Covas MI, Fiol M, et al. Cohort profile: design and methods of the PREDIMED study. Int J Epidemiol. 2012;41(2):377–85.PubMedCrossRef
12.
go back to reference Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378(25):e34.PubMedCrossRef Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378(25):e34.PubMedCrossRef
13.
go back to reference Guasch-Ferré M, Ruiz-Canela M, Li J, Zheng Y, Bulló M, Wang DD, et al. Plasma acylcarnitines and risk of type 2 diabetes in a mediterranean population at high cardiovascular risk. J Clin Endocrinol Metab. 2019;104(5):1508–19.PubMedCrossRef Guasch-Ferré M, Ruiz-Canela M, Li J, Zheng Y, Bulló M, Wang DD, et al. Plasma acylcarnitines and risk of type 2 diabetes in a mediterranean population at high cardiovascular risk. J Clin Endocrinol Metab. 2019;104(5):1508–19.PubMedCrossRef
14.
go back to reference Ruiz-Canela M, Guasch-Ferré M, Toledo E, Clish CB, Razquin C, Liang L, et al. Plasma branched chain/aromatic amino acids, enriched Mediterranean diet and risk of type 2 diabetes: case-cohort study within the PREDIMED trial. Diabetologia. 2018;61(7):1560–71.PubMedCentralCrossRef Ruiz-Canela M, Guasch-Ferré M, Toledo E, Clish CB, Razquin C, Liang L, et al. Plasma branched chain/aromatic amino acids, enriched Mediterranean diet and risk of type 2 diabetes: case-cohort study within the PREDIMED trial. Diabetologia. 2018;61(7):1560–71.PubMedCentralCrossRef
15.
go back to reference Guasch-Ferré M, Zheng Y, Ruiz-Canela M, Hruby A, Martínez-González MA, Clish CB, et al. Plasma acylcarnitines and risk of cardiovascular disease: effect of Mediterranean diet interventions. Am J Clin Nutr. 2016;103(6):1408–16.PubMedPubMedCentralCrossRef Guasch-Ferré M, Zheng Y, Ruiz-Canela M, Hruby A, Martínez-González MA, Clish CB, et al. Plasma acylcarnitines and risk of cardiovascular disease: effect of Mediterranean diet interventions. Am J Clin Nutr. 2016;103(6):1408–16.PubMedPubMedCentralCrossRef
16.
go back to reference Ruiz-Canela M, Toledo E, Clish CB, Hruby A, Liang L, Salas-Salvadó J, et al. Plasma branched-chain amino acids and incident cardiovascular disease in the PREDIMED trial. Clin Chem. 2016;62(4):582–92.PubMedPubMedCentralCrossRef Ruiz-Canela M, Toledo E, Clish CB, Hruby A, Liang L, Salas-Salvadó J, et al. Plasma branched-chain amino acids and incident cardiovascular disease in the PREDIMED trial. Clin Chem. 2016;62(4):582–92.PubMedPubMedCentralCrossRef
17.
go back to reference Willet W. Nutritional epidemiology. 3rd ed. New York: Oxford University Press; 2012.CrossRef Willet W. Nutritional epidemiology. 3rd ed. New York: Oxford University Press; 2012.CrossRef
18.
go back to reference Fernández-Ballart JD, Piñol JL, Zazpe I, Corella D, Carrasco P, Toledo E, et al. Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. Br J Nutr. 2010;103(12):1808–16.PubMedCrossRef Fernández-Ballart JD, Piñol JL, Zazpe I, Corella D, Carrasco P, Toledo E, et al. Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. Br J Nutr. 2010;103(12):1808–16.PubMedCrossRef
19.
go back to reference Mataix J. Tablas de composición de alimentos. 4th ed. Granada, Spain: Universidad de Granada; 2003. Mataix J. Tablas de composición de alimentos. 4th ed. Granada, Spain: Universidad de Granada; 2003.
20.
go back to reference Moreiras O, Carvajal A, Cabrera L. Tablas de Composición de Alimentos [Food Composition Tables]. 9th ed. Moreiras O, Carvajal A, Cabrera L, editors. Madrid, Spain: Ediciones Pirámide; 2005. Moreiras O, Carvajal A, Cabrera L. Tablas de Composición de Alimentos [Food Composition Tables]. 9th ed. Moreiras O, Carvajal A, Cabrera L, editors. Madrid, Spain: Ediciones Pirámide; 2005.
21.
go back to reference Elosua R, Marrugat J, Molina L, Pons S, Pujol E. Validation of the minnesota leisure time physical activity questionnaire in spanish men. Am J Epidemiol. 1994;139(12):1197–209.PubMedCrossRef Elosua R, Marrugat J, Molina L, Pons S, Pujol E. Validation of the minnesota leisure time physical activity questionnaire in spanish men. Am J Epidemiol. 1994;139(12):1197–209.PubMedCrossRef
22.
go back to reference Hernández-Alonso P, Papandreou C, Bulló M, Ruiz-Canela M, Dennis C, Deik A, et al. Plasma metabolites associated with frequent red wine consumption: a metabolomics approach within the PREDIMED study. Mol Nutr Food Res. 2019;63(17):1900140.CrossRef Hernández-Alonso P, Papandreou C, Bulló M, Ruiz-Canela M, Dennis C, Deik A, et al. Plasma metabolites associated with frequent red wine consumption: a metabolomics approach within the PREDIMED study. Mol Nutr Food Res. 2019;63(17):1900140.CrossRef
23.
go back to reference O’Sullivan JF, Morningstar JE, Yang Q, Zheng B, Gao Y, Jeanfavre S, et al. Dimethylguanidino valeric acid is a marker of liver fat and predicts diabetes. J Clin Investig. 2017;127(12):4394–402.PubMedPubMedCentralCrossRef O’Sullivan JF, Morningstar JE, Yang Q, Zheng B, Gao Y, Jeanfavre S, et al. Dimethylguanidino valeric acid is a marker of liver fat and predicts diabetes. J Clin Investig. 2017;127(12):4394–402.PubMedPubMedCentralCrossRef
24.
go back to reference Paynter NP, Balasubramanian R, Giulianini F, Wang DD, Tinker LF, Gopal S, et al. Metabolic predictors of incident coronary heart disease in women. Circulation. 2018;137(8):841–53.PubMedPubMedCentralCrossRef Paynter NP, Balasubramanian R, Giulianini F, Wang DD, Tinker LF, Gopal S, et al. Metabolic predictors of incident coronary heart disease in women. Circulation. 2018;137(8):841–53.PubMedPubMedCentralCrossRef
25.
go back to reference Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53.PubMedPubMedCentralCrossRef Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53.PubMedPubMedCentralCrossRef
26.
go back to reference Stekhoven DJ, Buhlmann P. MissForest–non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28(1):112–8.PubMedCrossRef Stekhoven DJ, Buhlmann P. MissForest–non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28(1):112–8.PubMedCrossRef
27.
go back to reference Gromski P, Xu Y, Kotze H, Correa E, Ellis D, Armitage E, et al. Influence of missing values substitutes on multivariate analysis of metabolomics data. Metabolites. 2014;4(2):433–52.PubMedPubMedCentralCrossRef Gromski P, Xu Y, Kotze H, Correa E, Ellis D, Armitage E, et al. Influence of missing values substitutes on multivariate analysis of metabolomics data. Metabolites. 2014;4(2):433–52.PubMedPubMedCentralCrossRef
28.
go back to reference Wei R, Wang J, Su M, Jia E, Chen S, Chen T, et al. Missing value imputation approach for mass spectrometry-based metabolomics data. Sci Rep. 2018;8(1):663.PubMedPubMedCentralCrossRef Wei R, Wang J, Su M, Jia E, Chen S, Chen T, et al. Missing value imputation approach for mass spectrometry-based metabolomics data. Sci Rep. 2018;8(1):663.PubMedPubMedCentralCrossRef
29.
go back to reference Blom G. Statistical estimates and transformed beta-variables. New York: Wiley; 1958. Blom G. Statistical estimates and transformed beta-variables. New York: Wiley; 1958.
30.
go back to reference Tripoli E, Giammanco M, Tabacchi G, Di Majo D, Giammanco S, La Guardia M. The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev. 2005;18(1):98–112.PubMedCrossRef Tripoli E, Giammanco M, Tabacchi G, Di Majo D, Giammanco S, La Guardia M. The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev. 2005;18(1):98–112.PubMedCrossRef
31.
go back to reference Lozano-Castellón J, López-Yerena A, Rinaldi de Alvarenga JF, Romero del Castillo-Alba J, Vallverdú-Queralt A, Escribano-Ferrer E, et al. Health-promoting properties of oleocanthal and oleacein: two secoiridoids from extra-virgin olive oil. Crit Rev Food Sci Nutr. 2020;60(15):2532–48.PubMedCrossRef Lozano-Castellón J, López-Yerena A, Rinaldi de Alvarenga JF, Romero del Castillo-Alba J, Vallverdú-Queralt A, Escribano-Ferrer E, et al. Health-promoting properties of oleocanthal and oleacein: two secoiridoids from extra-virgin olive oil. Crit Rev Food Sci Nutr. 2020;60(15):2532–48.PubMedCrossRef
32.
go back to reference Garcia-Aloy M, Hulshof PJM, Estruel-Amades S, Osté MCJ, Lankinen M, Geleijnse JM, et al. Biomarkers of food intake for nuts and vegetable oils: an extensive literature search. Genes Nutr. 2019;14(1):7.PubMedPubMedCentralCrossRef Garcia-Aloy M, Hulshof PJM, Estruel-Amades S, Osté MCJ, Lankinen M, Geleijnse JM, et al. Biomarkers of food intake for nuts and vegetable oils: an extensive literature search. Genes Nutr. 2019;14(1):7.PubMedPubMedCentralCrossRef
33.
go back to reference Nikou T, Sakavitsi ME, Kalampokis E, Halabalaki M. Metabolism and bioavailability of olive bioactive constituents based on in vitro, in vivo and human studies. Nutrients. 2022;14(18):3773.PubMedPubMedCentralCrossRef Nikou T, Sakavitsi ME, Kalampokis E, Halabalaki M. Metabolism and bioavailability of olive bioactive constituents based on in vitro, in vivo and human studies. Nutrients. 2022;14(18):3773.PubMedPubMedCentralCrossRef
34.
go back to reference De la Torre R, Corella D, Castañer O, Martínez-González MA, Salas-Salvador J, Vila J, et al. Protective effect of homovanillyl alcohol on cardiovascular disease and total mortality: virgin olive oil, wine, and catechol-methylathion. Am J Clin Nutr. 2017;105(6):1297–304.PubMedCrossRef De la Torre R, Corella D, Castañer O, Martínez-González MA, Salas-Salvador J, Vila J, et al. Protective effect of homovanillyl alcohol on cardiovascular disease and total mortality: virgin olive oil, wine, and catechol-methylathion. Am J Clin Nutr. 2017;105(6):1297–304.PubMedCrossRef
35.
go back to reference Almanza-Aguilera E, Davila-Cordova E, Guiñón-Fort D, Farràs M, Masala G, Santucci de Magistris M, et al. Correlation analysis between dietary intake of tyrosols and their food sources and urinary excretion of tyrosol and hydroxytyrosol in a european population. Antioxidants. 2023;12(3):715.PubMedPubMedCentralCrossRef Almanza-Aguilera E, Davila-Cordova E, Guiñón-Fort D, Farràs M, Masala G, Santucci de Magistris M, et al. Correlation analysis between dietary intake of tyrosols and their food sources and urinary excretion of tyrosol and hydroxytyrosol in a european population. Antioxidants. 2023;12(3):715.PubMedPubMedCentralCrossRef
36.
go back to reference Soldevila-Domenech N, Boronat A, Mateus J, Diaz-Pellicer P, Matilla I, Pérez-Otero M, et al. Generation of the antioxidant hydroxytyrosol from tyrosol present in beer and red wine in a randomized clinical trial. Nutrients. 2019;11(9):2241.PubMedPubMedCentralCrossRef Soldevila-Domenech N, Boronat A, Mateus J, Diaz-Pellicer P, Matilla I, Pérez-Otero M, et al. Generation of the antioxidant hydroxytyrosol from tyrosol present in beer and red wine in a randomized clinical trial. Nutrients. 2019;11(9):2241.PubMedPubMedCentralCrossRef
37.
go back to reference Boronat A, Mateus J, Soldevila-Domenech N, Guerra M, Rodríguez-Morató J, Varon C, et al. Cardiovascular benefits of tyrosol and its endogenous conversion into hydroxytyrosol in humans. A randomized, controlled trial. Free Radic Biol Med. 2019;143:471–81.PubMedCrossRef Boronat A, Mateus J, Soldevila-Domenech N, Guerra M, Rodríguez-Morató J, Varon C, et al. Cardiovascular benefits of tyrosol and its endogenous conversion into hydroxytyrosol in humans. A randomized, controlled trial. Free Radic Biol Med. 2019;143:471–81.PubMedCrossRef
38.
go back to reference Li J, Guasch-Ferré M, Chung W, Ruiz-Canela M, Toledo E, Corella D, et al. The Mediterranean diet, plasma metabolome, and cardiovascular disease risk. Eur Heart J. 2020;41(28):2645–56.PubMedPubMedCentralCrossRef Li J, Guasch-Ferré M, Chung W, Ruiz-Canela M, Toledo E, Corella D, et al. The Mediterranean diet, plasma metabolome, and cardiovascular disease risk. Eur Heart J. 2020;41(28):2645–56.PubMedPubMedCentralCrossRef
39.
41.
go back to reference Bethlehem L, van Echten-Deckert G. Ectoines as novel anti-inflammatory and tissue protective lead compounds with special focus on inflammatory bowel disease and lung inflammation. Pharmacol Res. 2021;164:105389.PubMedCrossRef Bethlehem L, van Echten-Deckert G. Ectoines as novel anti-inflammatory and tissue protective lead compounds with special focus on inflammatory bowel disease and lung inflammation. Pharmacol Res. 2021;164:105389.PubMedCrossRef
42.
go back to reference Bownik A, Stępniewska Z. Ectoine as a promising protective agent in humans and animals. Arch Ind Hyg Toxicol. 2016;67(4):260–5. Bownik A, Stępniewska Z. Ectoine as a promising protective agent in humans and animals. Arch Ind Hyg Toxicol. 2016;67(4):260–5.
43.
go back to reference Cuozzo S, de LeBlanc AD, LeBlanc JG, Hoffmann N, Tortella GR. Streptomyces genus as a source of probiotics and its potential for its use in health. Microbiol Res. 2023;266:127248.PubMedCrossRef Cuozzo S, de LeBlanc AD, LeBlanc JG, Hoffmann N, Tortella GR. Streptomyces genus as a source of probiotics and its potential for its use in health. Microbiol Res. 2023;266:127248.PubMedCrossRef
44.
go back to reference van Dorsten FA, Grün CH, van Velzen EJJ, Jacobs DM, Draijer R, van Duynhoven JPM. The metabolic fate of red wine and grape juice polyphenols in humans assessed by metabolomics. Mol Nutr Food Res. 2010;54(7):897–908.PubMedCrossRef van Dorsten FA, Grün CH, van Velzen EJJ, Jacobs DM, Draijer R, van Duynhoven JPM. The metabolic fate of red wine and grape juice polyphenols in humans assessed by metabolomics. Mol Nutr Food Res. 2010;54(7):897–908.PubMedCrossRef
45.
go back to reference Pallister T, Jackson MA, Martin TC, Zierer J, Jennings A, Mohney RP, et al. Hippurate as a metabolomic marker of gut microbiome diversity: modulation by diet and relationship to metabolic syndrome. Sci Rep. 2017;7(1):13670.PubMedPubMedCentralCrossRef Pallister T, Jackson MA, Martin TC, Zierer J, Jennings A, Mohney RP, et al. Hippurate as a metabolomic marker of gut microbiome diversity: modulation by diet and relationship to metabolic syndrome. Sci Rep. 2017;7(1):13670.PubMedPubMedCentralCrossRef
46.
go back to reference Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. N Engl J Med. 2013;368(17):1575–84.PubMedPubMedCentralCrossRef Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. N Engl J Med. 2013;368(17):1575–84.PubMedPubMedCentralCrossRef
47.
go back to reference Grizzell JA, Echeverria V. New Insights into the Mechanisms of action of cotinine and its distinctive effects from nicotine. Neurochem Res. 2015;40(10):2032–46.PubMedCrossRef Grizzell JA, Echeverria V. New Insights into the Mechanisms of action of cotinine and its distinctive effects from nicotine. Neurochem Res. 2015;40(10):2032–46.PubMedCrossRef
48.
go back to reference Weimann A, Sabroe M, Poulsen HE. Measurement of caffeine and five of the major metabolites in urine by high-performance liquid chromatography/tandem mass spectrometry. J Mass Spectrom. 2005;40(3):307–16.PubMedCrossRef Weimann A, Sabroe M, Poulsen HE. Measurement of caffeine and five of the major metabolites in urine by high-performance liquid chromatography/tandem mass spectrometry. J Mass Spectrom. 2005;40(3):307–16.PubMedCrossRef
49.
go back to reference Wong P, Bachki A, Banerjee K, Leyland-Jones B. Identification of N1-methyl-2-pyridone-5-carboxamide and N1-methyl-4-pyridone-5-carboxamide as components in urine extracts of individuals consuming coffee. J Pharm Biomed Anal. 2002;30(3):773–80.PubMedCrossRef Wong P, Bachki A, Banerjee K, Leyland-Jones B. Identification of N1-methyl-2-pyridone-5-carboxamide and N1-methyl-4-pyridone-5-carboxamide as components in urine extracts of individuals consuming coffee. J Pharm Biomed Anal. 2002;30(3):773–80.PubMedCrossRef
50.
go back to reference Jimenez-Lopez C, Carpena M, Lourenço-Lopes C, Gallardo-Gomez M, Lorenzo JM, Barba FJ, et al. Bioactive compounds and quality of extra virgin olive oil. Foods. 2020;9(8):1014.PubMedPubMedCentralCrossRef Jimenez-Lopez C, Carpena M, Lourenço-Lopes C, Gallardo-Gomez M, Lorenzo JM, Barba FJ, et al. Bioactive compounds and quality of extra virgin olive oil. Foods. 2020;9(8):1014.PubMedPubMedCentralCrossRef
51.
go back to reference An Y, Xu W, Li H, Lei H, Zhang L, Hao F, et al. High-fat diet induces dynamic metabolic alterations in multiple biological matrices of rats. J Proteome Res. 2013;12(8):3755–68.PubMedCrossRef An Y, Xu W, Li H, Lei H, Zhang L, Hao F, et al. High-fat diet induces dynamic metabolic alterations in multiple biological matrices of rats. J Proteome Res. 2013;12(8):3755–68.PubMedCrossRef
52.
go back to reference Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of Diabetes mellitus. The Lancet. 1963;281(7285):785–9.CrossRef Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of Diabetes mellitus. The Lancet. 1963;281(7285):785–9.CrossRef
53.
go back to reference Krzeminski R, Gorinstein S, Leontowicz H, Leontowicz M, Gralak M, Czerwinski J, et al. Effect of different olive oils on bile excretion in rats fed cholesterol-containing and cholesterol-free diets. J Agric Food Chem. 2003;51(19):5774–9.PubMedCrossRef Krzeminski R, Gorinstein S, Leontowicz H, Leontowicz M, Gralak M, Czerwinski J, et al. Effect of different olive oils on bile excretion in rats fed cholesterol-containing and cholesterol-free diets. J Agric Food Chem. 2003;51(19):5774–9.PubMedCrossRef
54.
go back to reference Bae JS, Shin DH, Park PS, Choi BY, Kim MK, Shin MH, et al. The impact of serum uric acid level on arterial stiffness and carotid atherosclerosis: The Korean Multi-Rural Communities Cohort study. Atherosclerosis. 2013;231(1):145–51.PubMedCrossRef Bae JS, Shin DH, Park PS, Choi BY, Kim MK, Shin MH, et al. The impact of serum uric acid level on arterial stiffness and carotid atherosclerosis: The Korean Multi-Rural Communities Cohort study. Atherosclerosis. 2013;231(1):145–51.PubMedCrossRef
55.
go back to reference Lotito S, Frei B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic Biol Med. 2006;41(12):1727–46.PubMedCrossRef Lotito S, Frei B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic Biol Med. 2006;41(12):1727–46.PubMedCrossRef
56.
go back to reference Morze J, Wittenbecher C, Schwingshackl L, Danielewicz A, Rynkiewicz A, Hu FB, et al. Metabolomics and type 2 diabetes risk: an updated systematic review and meta-analysis of prospective cohort studies. Diabetes Care. 2022;45(4):1013–24.PubMedPubMedCentralCrossRef Morze J, Wittenbecher C, Schwingshackl L, Danielewicz A, Rynkiewicz A, Hu FB, et al. Metabolomics and type 2 diabetes risk: an updated systematic review and meta-analysis of prospective cohort studies. Diabetes Care. 2022;45(4):1013–24.PubMedPubMedCentralCrossRef
57.
go back to reference McGranaghan P, Saxena A, Rubens M, Radenkovic J, Bach D, Schleußner L, et al. Predictive value of metabolomic biomarkers for cardiovascular disease risk: a systematic review and meta-analysis. Biomarkers. 2020;25(2):101–11.PubMedCrossRef McGranaghan P, Saxena A, Rubens M, Radenkovic J, Bach D, Schleußner L, et al. Predictive value of metabolomic biomarkers for cardiovascular disease risk: a systematic review and meta-analysis. Biomarkers. 2020;25(2):101–11.PubMedCrossRef
58.
go back to reference Ruiz-Canela M, Guasch-Ferré M, Razquin C, Toledo E, Hernández-Alonso P, Clish CB, et al. Plasma acylcarnitines and risk of incident heart failure and atrial fibrillation: the Prevención con dieta mediterránea study. Revista Española de Cardiología (English Edition). 2022;75(8):649–58.CrossRef Ruiz-Canela M, Guasch-Ferré M, Razquin C, Toledo E, Hernández-Alonso P, Clish CB, et al. Plasma acylcarnitines and risk of incident heart failure and atrial fibrillation: the Prevención con dieta mediterránea study. Revista Española de Cardiología (English Edition). 2022;75(8):649–58.CrossRef
60.
go back to reference Gall WE, Beebe K, Lawton KA, Adam KP, Mitchell MW, Nakhle PJ, et al. α-Hydroxybutyrate Is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS ONE. 2010;5(5):e10883.PubMedPubMedCentralCrossRef Gall WE, Beebe K, Lawton KA, Adam KP, Mitchell MW, Nakhle PJ, et al. α-Hydroxybutyrate Is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS ONE. 2010;5(5):e10883.PubMedPubMedCentralCrossRef
61.
go back to reference Guasch-Ferré M, Hu FB, Martínez-González MA, Fitó M, Bulló M, Estruch R, et al. Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED Study. BMC Med. 2014;12(1):78.PubMedPubMedCentralCrossRef Guasch-Ferré M, Hu FB, Martínez-González MA, Fitó M, Bulló M, Estruch R, et al. Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED Study. BMC Med. 2014;12(1):78.PubMedPubMedCentralCrossRef
62.
go back to reference Urpi-Sarda M, Casas R, Chiva-Blanch G, Romero-Mamani ES, Valderas-Martínez P, Arranz S, et al. Virgin olive oil and nuts as key foods of the Mediterranean diet effects on inflammatory biomakers related to atherosclerosis. Pharmacol Res. 2012;65(6):577–83.PubMedCrossRef Urpi-Sarda M, Casas R, Chiva-Blanch G, Romero-Mamani ES, Valderas-Martínez P, Arranz S, et al. Virgin olive oil and nuts as key foods of the Mediterranean diet effects on inflammatory biomakers related to atherosclerosis. Pharmacol Res. 2012;65(6):577–83.PubMedCrossRef
63.
go back to reference Gimeno E, de la Torre-Carbot K, Lamuela-Raventós RM, Castellote AI, Fitó M, de la Torre R, et al. Changes in the phenolic content of low density lipoprotein after olive oil consumption in men. A randomized crossover controlled trial. Br J Nutr. 2007;98(6):1243–50.PubMedCrossRef Gimeno E, de la Torre-Carbot K, Lamuela-Raventós RM, Castellote AI, Fitó M, de la Torre R, et al. Changes in the phenolic content of low density lipoprotein after olive oil consumption in men. A randomized crossover controlled trial. Br J Nutr. 2007;98(6):1243–50.PubMedCrossRef
64.
go back to reference Bullo M, Lamuela-Raventos R, Salas-Salvado J. Mediterranean diet and oxidation: nuts and olive oil as important sources of fat and antioxidants. Curr Top Med Chem. 2011;11(14):1797–810.PubMedCrossRef Bullo M, Lamuela-Raventos R, Salas-Salvado J. Mediterranean diet and oxidation: nuts and olive oil as important sources of fat and antioxidants. Curr Top Med Chem. 2011;11(14):1797–810.PubMedCrossRef
65.
go back to reference Salas-Salvadó J, Bulló M, Babio N, Martínez-González MÁ, Ibarrola-Jurado N, Basora J, et al. Reduction in the incidence of type 2 diabetes with the mediterranean diet. Diabet Care. 2011;34(1):14–9.CrossRef Salas-Salvadó J, Bulló M, Babio N, Martínez-González MÁ, Ibarrola-Jurado N, Basora J, et al. Reduction in the incidence of type 2 diabetes with the mediterranean diet. Diabet Care. 2011;34(1):14–9.CrossRef
66.
go back to reference Salas-Salvadó J, Bulló M, Estruch R, Ros E, Covas MI, Ibarrola-Jurado N, et al. Prevention of diabetes with mediterranean diets. Ann Intern Med. 2014;160(1):1–10.PubMedCrossRef Salas-Salvadó J, Bulló M, Estruch R, Ros E, Covas MI, Ibarrola-Jurado N, et al. Prevention of diabetes with mediterranean diets. Ann Intern Med. 2014;160(1):1–10.PubMedCrossRef
Metadata
Title
Olive oil consumption, plasma metabolites, and risk of type 2 diabetes and cardiovascular disease
Authors
Jesús F. García-Gavilán
Nancy Babio
Estefanía Toledo
Zhila Semnani-Azad
Cristina Razquin
Courtney Dennis
Amy Deik
Dolores Corella
Ramón Estruch
Emilio Ros
Montserrat Fitó
Fernando Arós
Miquel Fiol
José Lapetra
Rosa Lamuela-Raventos
Clary Clish
Miguel Ruiz-Canela
Miguel Ángel Martínez-González
Frank Hu
Jordi Salas-Salvadó
Marta Guasch-Ferré
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Type 2 Diabetes
Published in
Cardiovascular Diabetology / Issue 1/2023
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-023-02066-1

Other articles of this Issue 1/2023

Cardiovascular Diabetology 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine