Skip to main content
Top
Published in: World Journal of Pediatrics 3/2018

01-06-2018 | Original Article

Two novel mutations in the GAN gene causing giant axonal neuropathy

Authors: Monica Irad Normendez-Martínez, Lucero Monterde-Cruz, Roberto Martínez, Magdalena Marquez-Harper, Nayelli Esquitin-Garduño, Margarita Valdes-Flores, Leonora Casas-Avila, Valeria Ponce de Leon-Suarez, Viktor Javier Romero-Díaz, Alberto Hidalgo-Bravo

Published in: World Journal of Pediatrics | Issue 3/2018

Login to get access

Abstract

Background

Giant axonal neuropathy (GAN) is a rare neurodegenerative disease transmitted in an autosomal recessive mode. This disorder presents motor and sensitive symptoms with an onset in early childhood. Progressive neurodegeneration makes the patients wheelchair dependent by the end of the second decade of life. Affected individuals do not survive beyond the third decade of life. Molecular analysis has identified mutations in the gene GAN in patients with this disorder. This gene produces a protein called gigaxonin which is presumably involved in protein degradation via the ubiquitin–proteasome system. However, the underlying molecular mechanism is not clearly understood yet.

Methods

Here we present the first patient from Mexico with clinical data suggesting GAN. Sequencing of the GAN gene was carried out. Changes in the nucleotide sequence were investigated for their possible impact on protein function and structure using the publicly available prediction tools PolyPhen-2 and PANTHER.

Results

The patient is a compound heterozygous carrying two novel mutations in the GAN gene. The sequence analysis revealed two missense mutations in the Kelch repeats domain. In one allele, a C>T transition was found in exon 9 at the nucleotide position 55393 (g.55393C>T). In the other allele, a transversion G>T in exon 11 at the nucleotide position 67471 (g.67471G>T) was observed. Both of the bioinformatic tools predicted that these amino acid substitutions would have a negative impact on gigaxonin’s function.

Conclusion

This work provides useful information for health professionals and expands the spectrum of disease-causing mutations in the GAN gene and it is the first documented case in Mexican population.
Appendix
Available only for authorised users
Literature
1.
go back to reference Asbury AK, Gale MK, Cox SC, Baringer JR, Berg BO. Giant axonal neuropathy--a unique case with segmental neurofilamentous masses. Acta Neuropathol. 1972;20:237–47.CrossRefPubMed Asbury AK, Gale MK, Cox SC, Baringer JR, Berg BO. Giant axonal neuropathy--a unique case with segmental neurofilamentous masses. Acta Neuropathol. 1972;20:237–47.CrossRefPubMed
2.
go back to reference Berg BO, Rosenberg SH, Asbury AK. Giant axonal neuropathy. Pediatrics. 1972;49:894–9.PubMed Berg BO, Rosenberg SH, Asbury AK. Giant axonal neuropathy. Pediatrics. 1972;49:894–9.PubMed
3.
go back to reference Johnson-Kerner BL, Roth L, Greene JP, Wichterle H, Sproule DM. Giant axonal neuropathy: an updated perspective on its pathology and pathogenesis. Muscle Nerve. 2014;50:467–76.CrossRefPubMed Johnson-Kerner BL, Roth L, Greene JP, Wichterle H, Sproule DM. Giant axonal neuropathy: an updated perspective on its pathology and pathogenesis. Muscle Nerve. 2014;50:467–76.CrossRefPubMed
4.
5.
go back to reference Donaghy M, King RH, Thomas PK, Workman JM. Abnormalities of the axonal cytoskeleton in giant axonal neuropathy. J Neurocytol. 1988;17:197–208.CrossRefPubMed Donaghy M, King RH, Thomas PK, Workman JM. Abnormalities of the axonal cytoskeleton in giant axonal neuropathy. J Neurocytol. 1988;17:197–208.CrossRefPubMed
6.
go back to reference Bomont P, Cavalier L, Blondeau F, Ben Hamida C, Belal S, Tazir M, et al. The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat Genet. 2000;26:370–4.CrossRefPubMed Bomont P, Cavalier L, Blondeau F, Ben Hamida C, Belal S, Tazir M, et al. The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat Genet. 2000;26:370–4.CrossRefPubMed
7.
go back to reference Mahammad S, Murthy SN, Didonna A, Grin B, Israeli E, Perrot R, et al. Giant axonal neuropathy-associated gigaxonin mutations impair intermediate filament protein degradation. J Clin Invest. 2013;123:1964–75.CrossRefPubMedPubMedCentral Mahammad S, Murthy SN, Didonna A, Grin B, Israeli E, Perrot R, et al. Giant axonal neuropathy-associated gigaxonin mutations impair intermediate filament protein degradation. J Clin Invest. 2013;123:1964–75.CrossRefPubMedPubMedCentral
8.
go back to reference Akagi M, Mohri I, Iwatani Y, Kagitani-Shimono K, Okinaga T, Sakai N, et al. Clinicogenetical features of a japanese patient with giant axonal neuropathy. Brain Dev. 2012;34:156–62.CrossRefPubMed Akagi M, Mohri I, Iwatani Y, Kagitani-Shimono K, Okinaga T, Sakai N, et al. Clinicogenetical features of a japanese patient with giant axonal neuropathy. Brain Dev. 2012;34:156–62.CrossRefPubMed
9.
go back to reference Abu-Rashid M, Mahajnah M, Jaber L, Kornreich L, Bar-On E, Basel-Vanagaite L, et al. A novel mutation in the GAN gene causes an intermediate form of giant axonal neuropathy in an Arab-Israeli family. Eur J Paediatr Neurol. 2013;17:259–64.CrossRefPubMed Abu-Rashid M, Mahajnah M, Jaber L, Kornreich L, Bar-On E, Basel-Vanagaite L, et al. A novel mutation in the GAN gene causes an intermediate form of giant axonal neuropathy in an Arab-Israeli family. Eur J Paediatr Neurol. 2013;17:259–64.CrossRefPubMed
10.
go back to reference Miyatake S, Tada H, Moriya S, Hirano Y, Hayashi M, Oya Y, et al. Atypical giant axonal neuropathy arising from a homozygous mutation by uniparental isodisomy. Clin Genet. 2014;87:395–7.CrossRefPubMed Miyatake S, Tada H, Moriya S, Hirano Y, Hayashi M, Oya Y, et al. Atypical giant axonal neuropathy arising from a homozygous mutation by uniparental isodisomy. Clin Genet. 2014;87:395–7.CrossRefPubMed
11.
go back to reference Xu M, Da YW, Liu L, Wang F, Jia JP. Giant axonal neuropathy caused by a novel compound heterozygous mutation in the gigaxonin gene. J Child Neurol. 2013;28:1316–9.CrossRefPubMed Xu M, Da YW, Liu L, Wang F, Jia JP. Giant axonal neuropathy caused by a novel compound heterozygous mutation in the gigaxonin gene. J Child Neurol. 2013;28:1316–9.CrossRefPubMed
12.
go back to reference Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.CrossRefPubMedPubMedCentral Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.CrossRefPubMedPubMedCentral
13.
go back to reference Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13:2129–41.CrossRefPubMedPubMedCentral Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13:2129–41.CrossRefPubMedPubMedCentral
14.
go back to reference Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, et al. The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res. 2005;33:D284–8.CrossRefPubMed Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, et al. The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res. 2005;33:D284–8.CrossRefPubMed
15.
go back to reference Mussche S, Devreese B, Nagabhushan Kalburgi S, Bachaboina L, Fox JC, Shih HJ, et al. Restoration of cytoskeleton homeostasis after gigaxonin gene transfer for giant axonal neuropathy. Hum Gene Ther. 2013;24:209–19.CrossRefPubMed Mussche S, Devreese B, Nagabhushan Kalburgi S, Bachaboina L, Fox JC, Shih HJ, et al. Restoration of cytoskeleton homeostasis after gigaxonin gene transfer for giant axonal neuropathy. Hum Gene Ther. 2013;24:209–19.CrossRefPubMed
16.
go back to reference Sames L, Moore A, Arnold R, Ekins S. Recommendations to enable drug development for inherited neuropathies: Charcot–Marie–Tooth and Giant Axonal Neuropathy. Version 2. F1000Res. 2014;3:83.PubMedPubMedCentral Sames L, Moore A, Arnold R, Ekins S. Recommendations to enable drug development for inherited neuropathies: Charcot–Marie–Tooth and Giant Axonal Neuropathy. Version 2. F1000Res. 2014;3:83.PubMedPubMedCentral
17.
18.
go back to reference Perez-Torrado R, Yamada D, Defossez PA. Born to bind: the BTB protein–protein interaction domain. BioEssays. 2006;28:1194–202.CrossRefPubMed Perez-Torrado R, Yamada D, Defossez PA. Born to bind: the BTB protein–protein interaction domain. BioEssays. 2006;28:1194–202.CrossRefPubMed
19.
go back to reference Ding J, Liu JJ, Kowal AS, Nardine T, Bhattacharya P, Lee A, et al. Microtubule-associated protein 1B: a neuronal binding partner for gigaxonin. J Cell Biol. 2002;158:427–33.CrossRefPubMedPubMedCentral Ding J, Liu JJ, Kowal AS, Nardine T, Bhattacharya P, Lee A, et al. Microtubule-associated protein 1B: a neuronal binding partner for gigaxonin. J Cell Biol. 2002;158:427–33.CrossRefPubMedPubMedCentral
20.
go back to reference Allen E, Ding J, Wang W, Pramanik S, Chou J, Yau V, et al. Gigaxonin-controlled degradation of MAP1B light chain is critical to neuronal survival. Nature. 2005;438:224–8.CrossRefPubMed Allen E, Ding J, Wang W, Pramanik S, Chou J, Yau V, et al. Gigaxonin-controlled degradation of MAP1B light chain is critical to neuronal survival. Nature. 2005;438:224–8.CrossRefPubMed
21.
go back to reference Wang W, Ding J, Allen E, Zhu P, Zhang L, Vogel H, et al. Gigaxonin interacts with tubulin folding cofactor B and controls its degradation through the ubiquitin–proteasome pathway. Curr Biol. 2005;15:2050–5.CrossRefPubMed Wang W, Ding J, Allen E, Zhu P, Zhang L, Vogel H, et al. Gigaxonin interacts with tubulin folding cofactor B and controls its degradation through the ubiquitin–proteasome pathway. Curr Biol. 2005;15:2050–5.CrossRefPubMed
22.
go back to reference Ding J, Allen E, Wang W, Valle A, Wu C, Nardine T, et al. Gene targeting of GAN in mouse causes a toxic accumulation of microtubule-associated protein 8 and impaired retrograde axonal transport. Hum Mol Genet. 2006;15:1451–63.CrossRefPubMed Ding J, Allen E, Wang W, Valle A, Wu C, Nardine T, et al. Gene targeting of GAN in mouse causes a toxic accumulation of microtubule-associated protein 8 and impaired retrograde axonal transport. Hum Mol Genet. 2006;15:1451–63.CrossRefPubMed
23.
go back to reference Koop O, Schirmacher A, Nelis E, Timmerman V, De Jonghe P, Ringelstein B, et al. Genotype-phenotype analysis in patients with giant axonal neuropathy (GAN). Neuromuscul Disord. 2007;17:624–30.CrossRefPubMed Koop O, Schirmacher A, Nelis E, Timmerman V, De Jonghe P, Ringelstein B, et al. Genotype-phenotype analysis in patients with giant axonal neuropathy (GAN). Neuromuscul Disord. 2007;17:624–30.CrossRefPubMed
Metadata
Title
Two novel mutations in the GAN gene causing giant axonal neuropathy
Authors
Monica Irad Normendez-Martínez
Lucero Monterde-Cruz
Roberto Martínez
Magdalena Marquez-Harper
Nayelli Esquitin-Garduño
Margarita Valdes-Flores
Leonora Casas-Avila
Valeria Ponce de Leon-Suarez
Viktor Javier Romero-Díaz
Alberto Hidalgo-Bravo
Publication date
01-06-2018
Publisher
Childrens Hospital, Zhejiang University School of Medicine
Published in
World Journal of Pediatrics / Issue 3/2018
Print ISSN: 1708-8569
Electronic ISSN: 1867-0687
DOI
https://doi.org/10.1007/s12519-018-0140-z

Other articles of this Issue 3/2018

World Journal of Pediatrics 3/2018 Go to the issue