Skip to main content
Top
Published in: Journal of the Association for Research in Otolaryngology 1/2016

01-02-2016 | Research Article

Tuning to Binaural Cues in Human Auditory Cortex

Authors: Susan A. McLaughlin, Nathan C. Higgins, G. Christopher Stecker

Published in: Journal of the Association for Research in Otolaryngology | Issue 1/2016

Login to get access

Abstract

Interaural level and time differences (ILD and ITD), the primary binaural cues for sound localization in azimuth, are known to modulate the tuned responses of neurons in mammalian auditory cortex (AC). The majority of these neurons respond best to cue values that favor the contralateral ear, such that contralateral bias is evident in the overall population response and thereby expected in population-level functional imaging data. Human neuroimaging studies, however, have not consistently found contralaterally biased binaural response patterns. Here, we used functional magnetic resonance imaging (fMRI) to parametrically measure ILD and ITD tuning in human AC. For ILD, contralateral tuning was observed, using both univariate and multivoxel analyses, in posterior superior temporal gyrus (pSTG) in both hemispheres. Response-ILD functions were U-shaped, revealing responsiveness to both contralateral and—to a lesser degree—ipsilateral ILD values, consistent with rate coding by unequal populations of contralaterally and ipsilaterally tuned neurons. In contrast, for ITD, univariate analyses showed modest contralateral tuning only in left pSTG, characterized by a monotonic response-ITD function. A multivoxel classifier, however, revealed ITD coding in both hemispheres. Although sensitivity to ILD and ITD was distributed in similar AC regions, the differently shaped response functions and different response patterns across hemispheres suggest that basic ILD and ITD processes are not fully integrated in human AC. The results support opponent-channel theories of ILD but not necessarily ITD coding, the latter of which may involve multiple types of representation that differ across hemispheres.
Footnotes
1
Note that sensitivity to ILD reflects both the influence of binaural sensitivity per se (Salminen 2015), including binaural interactions such as ipsilateral inhibition (Krumbholz et al. 2005b; Kitzes 2008; Stecker et al. 2015), and monaural intensity cues.
 
2
A scree test was used to select the number of retained components; in most cases, less than 10 % decrease in residual pattern variance was noted beyond the 8th component.
 
3
Given the nature of the stimulus employed (100-Hz broadband noise-burst trains), this distribution of ITD-independent activity appears consistent with past studies demonstrating sensitivity to stimulus periodicity in lateral HG (Griffiths et al. 1998, 2001; Patterson et al. 2002; Hall et al. 2005).
 
Literature
go back to reference Ahveninen J, Jääskeläinen IP, Raij T, Bonmassar G, Devore S, Hämäläinen M, Levänen S, Lin F-H, Sams M, Shinn-Cunningham BG, Witzel T, Belliveau JW (2006) Task-modulated “what” and “where” pathways in human auditory cortex. Proc Natl Acad Sci U S A 103(39):14608–14613PubMedCentralCrossRefPubMed Ahveninen J, Jääskeläinen IP, Raij T, Bonmassar G, Devore S, Hämäläinen M, Levänen S, Lin F-H, Sams M, Shinn-Cunningham BG, Witzel T, Belliveau JW (2006) Task-modulated “what” and “where” pathways in human auditory cortex. Proc Natl Acad Sci U S A 103(39):14608–14613PubMedCentralCrossRefPubMed
go back to reference Altman JA, Balonov LJ, Deglin VL (1979) Effects of unilateral disorder of the brain hemisphere function in man on directional hearing. Neuropsychologia 17(3–4):295–301CrossRefPubMed Altman JA, Balonov LJ, Deglin VL (1979) Effects of unilateral disorder of the brain hemisphere function in man on directional hearing. Neuropsychologia 17(3–4):295–301CrossRefPubMed
go back to reference Altmann CF, Terada S, Kashino M, Goto K, Mima T, Fukuyama H, Furukawa S (2014) Independent or integrated processing of interaural time and level differences in human auditory cortex? Hear Res 312:121–127CrossRefPubMed Altmann CF, Terada S, Kashino M, Goto K, Mima T, Fukuyama H, Furukawa S (2014) Independent or integrated processing of interaural time and level differences in human auditory cortex? Hear Res 312:121–127CrossRefPubMed
go back to reference Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23(2):137–152CrossRefPubMed Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23(2):137–152CrossRefPubMed
go back to reference Belliveau LAC, Lyamzin DR, Lesica NA (2014) The neural representation of interaural time differences in gerbils is transformed from midbrain to cortex. J Neurosci 34(50):16796–16808PubMedCentralCrossRefPubMed Belliveau LAC, Lyamzin DR, Lesica NA (2014) The neural representation of interaural time differences in gerbils is transformed from midbrain to cortex. J Neurosci 34(50):16796–16808PubMedCentralCrossRefPubMed
go back to reference Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57(1):289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57(1):289–300
go back to reference Bisiach E, Cornacchia L, Sterzi R, Vallar G (1984) Disorders of perceived auditory lateralization after lesions of the right hemisphere. Brain 107(Pt 1):37–52CrossRefPubMed Bisiach E, Cornacchia L, Sterzi R, Vallar G (1984) Disorders of perceived auditory lateralization after lesions of the right hemisphere. Brain 107(Pt 1):37–52CrossRefPubMed
go back to reference Blauert J (1983) Spatial hearing. MIT Press, Cambridge Blauert J (1983) Spatial hearing. MIT Press, Cambridge
go back to reference Boester L (1994) Binaural time and intensity discrimination following unilateral auditory cortex ablation in Japanese macaques (Macaca fuscata). Master’s thesis, University of Toledo, Toledo Boester L (1994) Binaural time and intensity discrimination following unilateral auditory cortex ablation in Japanese macaques (Macaca fuscata). Master’s thesis, University of Toledo, Toledo
go back to reference Briley PM, Kitterick PT, Summerfield AQ (2013) Evidence for opponent process analysis of sound source location in humans. J Assoc Res Otolaryngol 14(1):83–101PubMedCentralCrossRefPubMed Briley PM, Kitterick PT, Summerfield AQ (2013) Evidence for opponent process analysis of sound source location in humans. J Assoc Res Otolaryngol 14(1):83–101PubMedCentralCrossRefPubMed
go back to reference Brungart DS, Rabinowitz WM (1999) Auditory localization of nearby sources: head-related transfer functions. J Acoust Soc Am 106(3 Pt 1):1465–1479CrossRefPubMed Brungart DS, Rabinowitz WM (1999) Auditory localization of nearby sources: head-related transfer functions. J Acoust Soc Am 106(3 Pt 1):1465–1479CrossRefPubMed
go back to reference Campbell RAA, Schnupp JWH, Shial A, King AJ (2006) Binaural-level functions in ferret auditory cortex: evidence for a continuous distribution of response properties. J Neurophysiol 95(6):3742–3755CrossRefPubMed Campbell RAA, Schnupp JWH, Shial A, King AJ (2006) Binaural-level functions in ferret auditory cortex: evidence for a continuous distribution of response properties. J Neurophysiol 95(6):3742–3755CrossRefPubMed
go back to reference Culling JF, Hawley ML, Litovsky RY (2004) The role of head-induced interaural time and level differences in the speech reception threshold for multiple interfering sound sources. J Acoust Soc Am 116(2):1057–1065CrossRefPubMed Culling JF, Hawley ML, Litovsky RY (2004) The role of head-induced interaural time and level differences in the speech reception threshold for multiple interfering sound sources. J Acoust Soc Am 116(2):1057–1065CrossRefPubMed
go back to reference Deouell L, Heller A, Malach R, D’Esposito M, Knight R (2007) Cerebral responses to change in spatial location of unattended sounds. Neuron 55(6):985–996CrossRefPubMed Deouell L, Heller A, Malach R, D’Esposito M, Knight R (2007) Cerebral responses to change in spatial location of unattended sounds. Neuron 55(6):985–996CrossRefPubMed
go back to reference Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980CrossRefPubMed Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980CrossRefPubMed
go back to reference Downar J, Crawley AP, Mikulis DJ, Davis KD (2000) A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci 3(3):277–283CrossRefPubMed Downar J, Crawley AP, Mikulis DJ, Davis KD (2000) A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci 3(3):277–283CrossRefPubMed
go back to reference Edmonds BA, Krumbholz K (2014) Are interaural time and level differences represented by independent or integrated codes in the human auditory cortex? J Assoc Res Otolaryngol 15(1):103–114PubMedCentralCrossRefPubMed Edmonds BA, Krumbholz K (2014) Are interaural time and level differences represented by independent or integrated codes in the human auditory cortex? J Assoc Res Otolaryngol 15(1):103–114PubMedCentralCrossRefPubMed
go back to reference Fitzpatrick DC, Kuwada S, Batra R (2000) Neural sensitivity to interaural time differences: beyond the Jeffress model. J Neurosci 20(4):1605–1615PubMed Fitzpatrick DC, Kuwada S, Batra R (2000) Neural sensitivity to interaural time differences: beyond the Jeffress model. J Neurosci 20(4):1605–1615PubMed
go back to reference Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, Turner R (1995) Analysis of fMRI time-series revisited. Neuroimage 2(1):45–53CrossRefPubMed Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, Turner R (1995) Analysis of fMRI time-series revisited. Neuroimage 2(1):45–53CrossRefPubMed
go back to reference Furukawa S, Middlebrooks JC (2002) Cortical representation of auditory space: information-bearing features of spike patterns. J Neurophysiol 87(4):1749–1762PubMed Furukawa S, Middlebrooks JC (2002) Cortical representation of auditory space: information-bearing features of spike patterns. J Neurophysiol 87(4):1749–1762PubMed
go back to reference Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4):870–878CrossRefPubMed Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4):870–878CrossRefPubMed
go back to reference Griffiths T, Buchel C, Frackowiak R, Patterson R (1998) Analysis of the temporal structure of sound by the human brain. Nat Neurosci 1(5):422–427CrossRefPubMed Griffiths T, Buchel C, Frackowiak R, Patterson R (1998) Analysis of the temporal structure of sound by the human brain. Nat Neurosci 1(5):422–427CrossRefPubMed
go back to reference Griffiths TD, Uppenkamp S, Johnsrude I, Josephs O, Patterson R (2001) Encoding of the temporal regularity of sound in the human brainstem. Nat Neurosci 4(6):633–637CrossRefPubMed Griffiths TD, Uppenkamp S, Johnsrude I, Josephs O, Patterson R (2001) Encoding of the temporal regularity of sound in the human brainstem. Nat Neurosci 4(6):633–637CrossRefPubMed
go back to reference Hackett T, Stepniewska I, Kaas J (1998) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J Comp Neurol 394(4):475–495CrossRefPubMed Hackett T, Stepniewska I, Kaas J (1998) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J Comp Neurol 394(4):475–495CrossRefPubMed
go back to reference Hall DA, Haggard M, Akeroyd M, Palmer AR, Summerfield AQ, Elliott M, Gurney E, Bowtell R (1999) Sparse temporal sampling in auditory fMRI. Hum Brain Mapp 7(3):213–223CrossRefPubMed Hall DA, Haggard M, Akeroyd M, Palmer AR, Summerfield AQ, Elliott M, Gurney E, Bowtell R (1999) Sparse temporal sampling in auditory fMRI. Hum Brain Mapp 7(3):213–223CrossRefPubMed
go back to reference Hall D, Barrett D, Akeroyd M, Summerfield A (2005) Cortical representations of temporal structure in sound. J Neurophysiol 94(5):3181–3191CrossRefPubMed Hall D, Barrett D, Akeroyd M, Summerfield A (2005) Cortical representations of temporal structure in sound. J Neurophysiol 94(5):3181–3191CrossRefPubMed
go back to reference Harrington IA, Stecker GC, Macpherson EA, Middlebrooks JC (2008) Spatial sensitivity of neurons in the anterior, posterior, and primary fields of cat auditory cortex. Hear Res 240:22–41PubMedCentralCrossRefPubMed Harrington IA, Stecker GC, Macpherson EA, Middlebrooks JC (2008) Spatial sensitivity of neurons in the anterior, posterior, and primary fields of cat auditory cortex. Hear Res 240:22–41PubMedCentralCrossRefPubMed
go back to reference Haynes J-D, Rees G (2005) Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat Neurosci 8(5):686–690CrossRefPubMed Haynes J-D, Rees G (2005) Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat Neurosci 8(5):686–690CrossRefPubMed
go back to reference Heffner HE (1997) The role of macaque auditory cortex in sound localization. Acta Otolaryngol Suppl 532:22–27CrossRefPubMed Heffner HE (1997) The role of macaque auditory cortex in sound localization. Acta Otolaryngol Suppl 532:22–27CrossRefPubMed
go back to reference Imig TJ, Adrián HO (1977) Binaural columns in the primary field (A1) of cat auditory cortex. Brain Res 138(2):241–257CrossRefPubMed Imig TJ, Adrián HO (1977) Binaural columns in the primary field (A1) of cat auditory cortex. Brain Res 138(2):241–257CrossRefPubMed
go back to reference Jäncke L, Wüstenberg T, Schulze K, Heinze HJ (2002) Asymmetric hemodynamic responses of the human auditory cortex to monaural and binaural stimulation. Hear Res 170(1–2):166–178CrossRefPubMed Jäncke L, Wüstenberg T, Schulze K, Heinze HJ (2002) Asymmetric hemodynamic responses of the human auditory cortex to monaural and binaural stimulation. Hear Res 170(1–2):166–178CrossRefPubMed
go back to reference Jenkins WM, Masterton RB (1982) Sound localization: effects of unilateral lesions in central auditory system. J Neurophysiol 47(6):987–1016PubMed Jenkins WM, Masterton RB (1982) Sound localization: effects of unilateral lesions in central auditory system. J Neurophysiol 47(6):987–1016PubMed
go back to reference Johnson BW, Hautus MJ (2010) Processing of binaural spatial information in human auditory cortex: neuromagnetic responses to interaural timing and level differences. Neuropsychologia 48(9):2610–2619CrossRefPubMed Johnson BW, Hautus MJ (2010) Processing of binaural spatial information in human auditory cortex: neuromagnetic responses to interaural timing and level differences. Neuropsychologia 48(9):2610–2619CrossRefPubMed
go back to reference Kavanagh GL, Kelly JB (1987) Contribution of auditory cortex to sound localization by the ferret (Mustela putorius). J Neurophysiol 57(6):1746–1766PubMed Kavanagh GL, Kelly JB (1987) Contribution of auditory cortex to sound localization by the ferret (Mustela putorius). J Neurophysiol 57(6):1746–1766PubMed
go back to reference Kelly RE Jr, Alexopoulos GS, Wang Z, Gunning FM, Murphy CF, Morimoto SS, Kanellopoulos D, Jia Z, Lim KO, Hoptman MJ (2010) Visual inspection of independent components: defining a procedure for artifact removal from fMRI data. J Neurosci Methods 189(2):233–245PubMedCentralCrossRefPubMed Kelly RE Jr, Alexopoulos GS, Wang Z, Gunning FM, Murphy CF, Morimoto SS, Kanellopoulos D, Jia Z, Lim KO, Hoptman MJ (2010) Visual inspection of independent components: defining a procedure for artifact removal from fMRI data. J Neurosci Methods 189(2):233–245PubMedCentralCrossRefPubMed
go back to reference Kitzes L (2008) Binaural interactions shape binaural response structures and frequency response functions in primary auditory cortex. Hear Res 238(1–2):68–76CrossRefPubMed Kitzes L (2008) Binaural interactions shape binaural response structures and frequency response functions in primary auditory cortex. Hear Res 238(1–2):68–76CrossRefPubMed
go back to reference Krumbholz K, Schönwiesner M, von Cramon DY, Rübsamen R, Shah NJ, Zilles K, Fink GR (2005a) Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe. Cereb Cortex 15(3):317–324CrossRefPubMed Krumbholz K, Schönwiesner M, von Cramon DY, Rübsamen R, Shah NJ, Zilles K, Fink GR (2005a) Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe. Cereb Cortex 15(3):317–324CrossRefPubMed
go back to reference Krumbholz K, Schönwiesner S, Rübsamen R, Zilles K, Fink G, von Cramon DY (2005b) Hierarchical processing of sound location and motion in the human brainstem and planum temporale. Eur J Neurosci 21(1):230–238CrossRefPubMed Krumbholz K, Schönwiesner S, Rübsamen R, Zilles K, Fink G, von Cramon DY (2005b) Hierarchical processing of sound location and motion in the human brainstem and planum temporale. Eur J Neurosci 21(1):230–238CrossRefPubMed
go back to reference Krumbholz K, Hewson-Stoate N, Schönwiesner M (2007) Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices. J Neurophysiol 97(2):1649–1655CrossRefPubMed Krumbholz K, Hewson-Stoate N, Schönwiesner M (2007) Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices. J Neurophysiol 97(2):1649–1655CrossRefPubMed
go back to reference Kucyi A, Hodaie M, Davis KD (2012) Lateralization in intrinsic functional connectivity of the temporoparietal junction with salience- and attention-related brain networks. J Neurophysiol 108(12):3382–3392CrossRefPubMed Kucyi A, Hodaie M, Davis KD (2012) Lateralization in intrinsic functional connectivity of the temporoparietal junction with salience- and attention-related brain networks. J Neurophysiol 108(12):3382–3392CrossRefPubMed
go back to reference Kuhn G (1977) Model for interaural time differences in the azimuthal plane. J Acoust Soc Am 62(157–67) Kuhn G (1977) Model for interaural time differences in the azimuthal plane. J Acoust Soc Am 62(157–67)
go back to reference Langers DRM, Backes WH, van Dijk P (2007) Representation of lateralization and tonotopy in primary versus secondary human auditory cortex. Neuroimage 34(1):264–273CrossRefPubMed Langers DRM, Backes WH, van Dijk P (2007) Representation of lateralization and tonotopy in primary versus secondary human auditory cortex. Neuroimage 34(1):264–273CrossRefPubMed
go back to reference Lau C, Zhang JW, Cheng JS, Zhou IY, Cheung MM, Wu EX (2013) Noninvasive fMRI investigation of interaural level difference processing in the rat auditory subcortex. PLoS One 8(8), e70706PubMedCentralCrossRefPubMed Lau C, Zhang JW, Cheng JS, Zhou IY, Cheung MM, Wu EX (2013) Noninvasive fMRI investigation of interaural level difference processing in the rat auditory subcortex. PLoS One 8(8), e70706PubMedCentralCrossRefPubMed
go back to reference Licklider J (1948) The influence of interaural phase relations upon the masking of speech by white noise. J Acoust Soc Am 20(2):150–159CrossRef Licklider J (1948) The influence of interaural phase relations upon the masking of speech by white noise. J Acoust Soc Am 20(2):150–159CrossRef
go back to reference Lomber SG, Malhotra S, Hall AJ (2007) Functional specialization in non-primary auditory cortex of the cat: areal and laminar contributions to sound localization. Hear Res 229(1–2):31–45CrossRefPubMed Lomber SG, Malhotra S, Hall AJ (2007) Functional specialization in non-primary auditory cortex of the cat: areal and laminar contributions to sound localization. Hear Res 229(1–2):31–45CrossRefPubMed
go back to reference Lui LL, Mokri Y, Reser DH, Rosa MGP, Rajan R (2015) Responses of neurons in the marmoset primary auditory cortex to interaural level differences: comparison of pure tones and vocalizations. Front Neurosci 9:132PubMedCentralCrossRefPubMed Lui LL, Mokri Y, Reser DH, Rosa MGP, Rajan R (2015) Responses of neurons in the marmoset primary auditory cortex to interaural level differences: comparison of pure tones and vocalizations. Front Neurosci 9:132PubMedCentralCrossRefPubMed
go back to reference Macaulay EJ, Hartmann WM, Rakerd B (2010) The acoustical bright spot and mislocalization of tones by human listeners. J Acoust Soc Am 127(3):1440–1449PubMedCentralCrossRefPubMed Macaulay EJ, Hartmann WM, Rakerd B (2010) The acoustical bright spot and mislocalization of tones by human listeners. J Acoust Soc Am 127(3):1440–1449PubMedCentralCrossRefPubMed
go back to reference Macpherson EA, Middlebrooks JC (2002) Listener weighting of cues for lateral angle: the duplex theory of sound localization revisited. J Acoust Soc Am 111(5 Pt 1):2219–2236CrossRefPubMed Macpherson EA, Middlebrooks JC (2002) Listener weighting of cues for lateral angle: the duplex theory of sound localization revisited. J Acoust Soc Am 111(5 Pt 1):2219–2236CrossRefPubMed
go back to reference Magezi DA, Krumbholz K (2010) Evidence for opponent-channel coding of interaural time differences in human auditory cortex. J Neurophysiol 104(4):1997–2007PubMedCentralCrossRefPubMed Magezi DA, Krumbholz K (2010) Evidence for opponent-channel coding of interaural time differences in human auditory cortex. J Neurophysiol 104(4):1997–2007PubMedCentralCrossRefPubMed
go back to reference Malhotra S, Hall AJ, Lomber SG (2004) Cortical control of sound localization in the cat: unilateral cooling deactivation of 19 cerebral areas. J Neurophysiol 92(3):1625–1643CrossRefPubMed Malhotra S, Hall AJ, Lomber SG (2004) Cortical control of sound localization in the cat: unilateral cooling deactivation of 19 cerebral areas. J Neurophysiol 92(3):1625–1643CrossRefPubMed
go back to reference McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4(4):396–401CrossRefPubMed McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4(4):396–401CrossRefPubMed
go back to reference McLaughlin SA (2013) Functional magnetic resonance imaging of human auditory cortical tuning to interaural level and time differences. PhD thesis, University of Washington McLaughlin SA (2013) Functional magnetic resonance imaging of human auditory cortical tuning to interaural level and time differences. PhD thesis, University of Washington
go back to reference Middlebrooks JC, Pettigrew JD (1981) Functional classes of neurons in primary auditory cortex of the cat distinguished by sensitivity to sound location. J Neurosci 1(1):107–120PubMed Middlebrooks JC, Pettigrew JD (1981) Functional classes of neurons in primary auditory cortex of the cat distinguished by sensitivity to sound location. J Neurosci 1(1):107–120PubMed
go back to reference Nakamoto KT, Zhang J, Kitzes LM (2004) Response patterns along an isofrequency contour in cat primary auditory cortex (AI) to stimuli varying in average and interaural levels. J Neurophysiol 91(1):118–135CrossRefPubMed Nakamoto KT, Zhang J, Kitzes LM (2004) Response patterns along an isofrequency contour in cat primary auditory cortex (AI) to stimuli varying in average and interaural levels. J Neurophysiol 91(1):118–135CrossRefPubMed
go back to reference Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15(1):1–25CrossRefPubMed Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15(1):1–25CrossRefPubMed
go back to reference Nourski KV, Steinschneider M, McMurray B, Kovach CK, Oya H, Kawasaki H, Howard MA 3rd (2014) Functional organization of human auditory cortex: investigation of response latencies through direct recordings. Neuroimage 101:598–609PubMedCentralCrossRefPubMed Nourski KV, Steinschneider M, McMurray B, Kovach CK, Oya H, Kawasaki H, Howard MA 3rd (2014) Functional organization of human auditory cortex: investigation of response latencies through direct recordings. Neuroimage 101:598–609PubMedCentralCrossRefPubMed
go back to reference Oldfield R (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMed Oldfield R (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMed
go back to reference Palmer A, Kuwada S (2005) Binaural and spatial coding in the inferior colliculus. In: Winer JA, S. C. (eds) The inferior colliculus. Springer, New York, chapter 13, 377–410 Palmer A, Kuwada S (2005) Binaural and spatial coding in the inferior colliculus. In: Winer JA, S. C. (eds) The inferior colliculus. Springer, New York, chapter 13, 377–410
go back to reference Palomäki KJ, Tiitinen H, Mäkinen V, May PJC, Alku P (2005) Spatial processing in human auditory cortex: the effects of 3D, ITD, and ILD stimulation techniques. Brain Res Cogn Brain Res 24(3):364–379CrossRefPubMed Palomäki KJ, Tiitinen H, Mäkinen V, May PJC, Alku P (2005) Spatial processing in human auditory cortex: the effects of 3D, ITD, and ILD stimulation techniques. Brain Res Cogn Brain Res 24(3):364–379CrossRefPubMed
go back to reference Patterson RD, Uppenkamp S, Johnsrude IS, Griffiths TD (2002) The processing of temporal pitch and melody information in auditory cortex. Neuron 36(4):767–776CrossRefPubMed Patterson RD, Uppenkamp S, Johnsrude IS, Griffiths TD (2002) The processing of temporal pitch and melody information in auditory cortex. Neuron 36(4):767–776CrossRefPubMed
go back to reference Phillips DP, Hall SE (2005) Psychophysical evidence for adaptation of central auditory processors for interaural differences in time and level. Hear Res 202(1–2):188–199CrossRefPubMed Phillips DP, Hall SE (2005) Psychophysical evidence for adaptation of central auditory processors for interaural differences in time and level. Hear Res 202(1–2):188–199CrossRefPubMed
go back to reference Phillips DP, Irvine DR (1981) Responses of single neurons in physiologically defined area A1 of cat cerebral cortex: sensitivity to interaural intensity differences. Hear Res 4(3–4):299–307CrossRefPubMed Phillips DP, Irvine DR (1981) Responses of single neurons in physiologically defined area A1 of cat cerebral cortex: sensitivity to interaural intensity differences. Hear Res 4(3–4):299–307CrossRefPubMed
go back to reference Rauschecker J, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci U S A 97(22):11800–11806PubMedCentralCrossRefPubMed Rauschecker J, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci U S A 97(22):11800–11806PubMedCentralCrossRefPubMed
go back to reference Reale RA, Brugge JF (1990) Auditory cortical neurons are sensitive to static and continuously changing interaural phase cues. J Neurophysiol 64(4):1247–1260PubMed Reale RA, Brugge JF (1990) Auditory cortical neurons are sensitive to static and continuously changing interaural phase cues. J Neurophysiol 64(4):1247–1260PubMed
go back to reference Ruff RM, Hersh NA, Pribram KH (1981) Auditory spatial deficits in the personal and extrapersonal frames of reference due to cortical lesions. Neuropsychologia 19(3):435–443CrossRefPubMed Ruff RM, Hersh NA, Pribram KH (1981) Auditory spatial deficits in the personal and extrapersonal frames of reference due to cortical lesions. Neuropsychologia 19(3):435–443CrossRefPubMed
go back to reference Salminen NH (2015) Human cortical sensitivity to interaural level differences in low- and high-frequency sounds. J Acoust Soc Am 137(2):EL190–EL193CrossRefPubMed Salminen NH (2015) Human cortical sensitivity to interaural level differences in low- and high-frequency sounds. J Acoust Soc Am 137(2):EL190–EL193CrossRefPubMed
go back to reference Salminen NH, Tiitinen H, Miettinen I, Alku P, May PJC (2010) Asymmetrical representation of auditory space in human cortex. Brain Res 1306:93–99CrossRefPubMed Salminen NH, Tiitinen H, Miettinen I, Alku P, May PJC (2010) Asymmetrical representation of auditory space in human cortex. Brain Res 1306:93–99CrossRefPubMed
go back to reference Salminen NH, Altoè A, Takanen M, Santala O, Pulkki V (2015a) Human cortical sensitivity to interaural time difference in high-frequency sounds. Hear Res 323:99–106CrossRefPubMed Salminen NH, Altoè A, Takanen M, Santala O, Pulkki V (2015a) Human cortical sensitivity to interaural time difference in high-frequency sounds. Hear Res 323:99–106CrossRefPubMed
go back to reference Salminen NH, Takanen M, Santala O, Alku P, Pulkki V (2015b) Neural realignment of spatially separated sound components. J Acoust Soc Am 137(6):3356CrossRefPubMed Salminen NH, Takanen M, Santala O, Alku P, Pulkki V (2015b) Neural realignment of spatially separated sound components. J Acoust Soc Am 137(6):3356CrossRefPubMed
go back to reference Salminen NH, Takanen M, Santala O, Lamminsalo J, Altoè A, Pulkki V (2015c) Integrated processing of spatial cues in human auditory cortex. Hear Res 327:143–152CrossRefPubMed Salminen NH, Takanen M, Santala O, Lamminsalo J, Altoè A, Pulkki V (2015c) Integrated processing of spatial cues in human auditory cortex. Hear Res 327:143–152CrossRefPubMed
go back to reference Schröger E (1996) Interaural time and level differences: integrated or separated processing? Hear Res 96(1–2):191–198CrossRefPubMed Schröger E (1996) Interaural time and level differences: integrated or separated processing? Hear Res 96(1–2):191–198CrossRefPubMed
go back to reference Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219CrossRefPubMed Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219CrossRefPubMed
go back to reference Spierer L, Bellmann-Thiran A, Maeder P, Murray MM, Clarke S (2009) Hemispheric competence for auditory spatial representation. Brain 132(Pt 7):1953–1966CrossRefPubMed Spierer L, Bellmann-Thiran A, Maeder P, Murray MM, Clarke S (2009) Hemispheric competence for auditory spatial representation. Brain 132(Pt 7):1953–1966CrossRefPubMed
go back to reference Stecker GC (2010) More modeling of temporal weighting functions for interaural time and level differences. Assoc Res Otolaryngol Abs 33:831 Stecker GC (2010) More modeling of temporal weighting functions for interaural time and level differences. Assoc Res Otolaryngol Abs 33:831
go back to reference Stecker GC, Middlebrooks JC (2003) Distributed coding of sound locations in the auditory cortex. Biol Cybern 89(5):341–349CrossRefPubMed Stecker GC, Middlebrooks JC (2003) Distributed coding of sound locations in the auditory cortex. Biol Cybern 89(5):341–349CrossRefPubMed
go back to reference Stecker GC, Mickey B, Macpherson E, Middlebrooks J (2003) Spatial sensitivity in field PAF of cat auditory cortex. J Neurophysiol 89:2889–2903CrossRefPubMed Stecker GC, Mickey B, Macpherson E, Middlebrooks J (2003) Spatial sensitivity in field PAF of cat auditory cortex. J Neurophysiol 89:2889–2903CrossRefPubMed
go back to reference Stecker GC, Harrington I, Macpherson E, Middlebrooks J (2005a) Spatial sensitivity in the dorsal zone (area DZ) of cat auditory cortex. J Neurophysiol 94(2):1267–1280CrossRefPubMed Stecker GC, Harrington I, Macpherson E, Middlebrooks J (2005a) Spatial sensitivity in the dorsal zone (area DZ) of cat auditory cortex. J Neurophysiol 94(2):1267–1280CrossRefPubMed
go back to reference Stecker GC, McLaughlin SA, Higgins NC (2015) Monaural and binaural contributions to interaural-level-difference sensitivity in human auditory cortex. Neuroimage Stecker GC, McLaughlin SA, Higgins NC (2015) Monaural and binaural contributions to interaural-level-difference sensitivity in human auditory cortex. Neuroimage
go back to reference Tardif E, Murray MM, Meylan R, Spierer L, Clarke S (2006) The spatiotemporal brain dynamics of processing and integrating sound localization cues in humans. Brain Res 1092(1):161–176CrossRefPubMed Tardif E, Murray MM, Meylan R, Spierer L, Clarke S (2006) The spatiotemporal brain dynamics of processing and integrating sound localization cues in humans. Brain Res 1092(1):161–176CrossRefPubMed
go back to reference Thompson GC, Cortez AM (1983) The inability of squirrel monkeys to localize sound after unilateral ablation of auditory cortex. Behav Brain Res 8(2):211–216CrossRefPubMed Thompson GC, Cortez AM (1983) The inability of squirrel monkeys to localize sound after unilateral ablation of auditory cortex. Behav Brain Res 8(2):211–216CrossRefPubMed
go back to reference Tiitinen H, Salminen NH, Palomäki KJ, Mäkinen VT, Alku P, May PJC (2006) Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex. Neurosci Lett 396(1):17–22CrossRefPubMed Tiitinen H, Salminen NH, Palomäki KJ, Mäkinen VT, Alku P, May PJC (2006) Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex. Neurosci Lett 396(1):17–22CrossRefPubMed
go back to reference Trahiotis C, Stern RM (1989) Lateralization of bands of noise: effects of bandwidth and differences of interaural time and phase. J Acoust Soc Am 86(4):1285–1293CrossRefPubMed Trahiotis C, Stern RM (1989) Lateralization of bands of noise: effects of bandwidth and differences of interaural time and phase. J Acoust Soc Am 86(4):1285–1293CrossRefPubMed
go back to reference Ungan P, Yagcioglu S, Goksoy C (2001) Differences between the N1 waves of the responses to interaural time and intensity disparities: scalp topography and dipole sources. Clin Neurophysiol 112(3):485–498CrossRefPubMed Ungan P, Yagcioglu S, Goksoy C (2001) Differences between the N1 waves of the responses to interaural time and intensity disparities: scalp topography and dipole sources. Clin Neurophysiol 112(3):485–498CrossRefPubMed
go back to reference von Kriegstein K, Griffiths TD, Thompson SK, McAlpine D (2008) Responses to interaural time delay in human cortex. J Neurophysiol 100(5):2712–2718CrossRef von Kriegstein K, Griffiths TD, Thompson SK, McAlpine D (2008) Responses to interaural time delay in human cortex. J Neurophysiol 100(5):2712–2718CrossRef
go back to reference Warren JD, Griffiths TD (2003) Distinct mechanisms for processing spatial sequences and pitch sequences in the human auditory brain. J Neurosci 23(13):5799–5804PubMed Warren JD, Griffiths TD (2003) Distinct mechanisms for processing spatial sequences and pitch sequences in the human auditory brain. J Neurosci 23(13):5799–5804PubMed
go back to reference Werner-Reiss U, Groh JM (2008) A rate code for sound azimuth in monkey auditory cortex: implications for human neuroimaging studies. J Neurosci 28(14):3747–3758PubMedCentralCrossRefPubMed Werner-Reiss U, Groh JM (2008) A rate code for sound azimuth in monkey auditory cortex: implications for human neuroimaging studies. J Neurosci 28(14):3747–3758PubMedCentralCrossRefPubMed
go back to reference Wise LZ, Irvine DR (1985) Topographic organization of interaural intensity difference sensitivity in deep layers of cat superior colliculus: implications for auditory spatial representation. J Neurophysiol 54(2):185–211PubMed Wise LZ, Irvine DR (1985) Topographic organization of interaural intensity difference sensitivity in deep layers of cat superior colliculus: implications for auditory spatial representation. J Neurophysiol 54(2):185–211PubMed
go back to reference Woldorff MG, Tempelmann C, Fell J, Tegeler C, Gaschler-Markefski B, Hinrichs H, Heinz HJ, Scheich H (1999) Lateralized auditory spatial perception and the contralaterality of cortical processing as studied with functional magnetic resonance imaging and magnetoencephalography. Hum Brain Mapp 7(1):49–66CrossRefPubMed Woldorff MG, Tempelmann C, Fell J, Tegeler C, Gaschler-Markefski B, Hinrichs H, Heinz HJ, Scheich H (1999) Lateralized auditory spatial perception and the contralaterality of cortical processing as studied with functional magnetic resonance imaging and magnetoencephalography. Hum Brain Mapp 7(1):49–66CrossRefPubMed
go back to reference Woods TM, Lopez SE, Long JH, Rahman JE, Recanzone GH (2006) Effects of stimulus azimuth and intensity on the single-neuron activity in the auditory cortex of the alert macaque monkey. J Neurophysiol 96(6):3323–3337CrossRefPubMed Woods TM, Lopez SE, Long JH, Rahman JE, Recanzone GH (2006) Effects of stimulus azimuth and intensity on the single-neuron activity in the auditory cortex of the alert macaque monkey. J Neurophysiol 96(6):3323–3337CrossRefPubMed
go back to reference Woods D, Stecker GC, Rinne T, Herron T, Cate A, Yund EW, Liao I, Kang X (2009) Functional maps of human auditory cortex: effects of acoustic features and attention. PLoS One 4(4), e5183PubMedCentralCrossRefPubMed Woods D, Stecker GC, Rinne T, Herron T, Cate A, Yund EW, Liao I, Kang X (2009) Functional maps of human auditory cortex: effects of acoustic features and attention. PLoS One 4(4), e5183PubMedCentralCrossRefPubMed
go back to reference Yost WA, Dye RH, Sheft S (2007) Interaural time difference processing of broadband and narrow-band noise by inexperienced listeners. J Acoust Soc Am 121(3):EL103–EL109PubMedCentralCrossRefPubMed Yost WA, Dye RH, Sheft S (2007) Interaural time difference processing of broadband and narrow-band noise by inexperienced listeners. J Acoust Soc Am 121(3):EL103–EL109PubMedCentralCrossRefPubMed
go back to reference Zatorre RJ, Penhune VB (2001) Spatial localization after excision of human auditory cortex. J Neurosci 21(16):6321–6328PubMed Zatorre RJ, Penhune VB (2001) Spatial localization after excision of human auditory cortex. J Neurosci 21(16):6321–6328PubMed
go back to reference Zhang J, Nakamoto KT, Kitzes LM (2004) Binaural interaction revisited in the cat primary auditory cortex. J Neurophysiol 91(1):101–117CrossRefPubMed Zhang J, Nakamoto KT, Kitzes LM (2004) Binaural interaction revisited in the cat primary auditory cortex. J Neurophysiol 91(1):101–117CrossRefPubMed
Metadata
Title
Tuning to Binaural Cues in Human Auditory Cortex
Authors
Susan A. McLaughlin
Nathan C. Higgins
G. Christopher Stecker
Publication date
01-02-2016
Publisher
Springer US
Published in
Journal of the Association for Research in Otolaryngology / Issue 1/2016
Print ISSN: 1525-3961
Electronic ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-015-0546-4

Other articles of this Issue 1/2016

Journal of the Association for Research in Otolaryngology 1/2016 Go to the issue