Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2019

Open Access 01-12-2019 | Tuberous Sclerosis | Review

Efficacy and safety of mTOR inhibitors (rapamycin and its analogues) for tuberous sclerosis complex: a meta-analysis

Authors: Min Li, Ying Zhou, Chaoyang Chen, Ting Yang, Shuang Zhou, Shuqing Chen, Ye Wu, Yimin Cui

Published in: Orphanet Journal of Rare Diseases | Issue 1/2019

Login to get access

Abstract

Background

The treatment of tuberous sclerosis complex (TSC) using mammalian target of rapamycin (mTOR) inhibitors is clinically promising. The aim of the present study was to evaluate the efficacy and safety of mTOR inhibitors for improving the clinical symptoms of TSC.

Methods

We performed a systematic search of major electronic databases (PubMed, EMBASE, Cochrane Library and WanFang, CNKI, and VIP databases) to identify randomized controlled trials (RCTs) and quasi-randomized studies from the date of database inception to November 2017; the Chinese Food and Drug Administration and clinicaltrials.gov were also searched for unpublished studies. The endpoints of the study were the tumor response rate and seizure frequency response rate (the proportion of patients achieving a ≥ 50% reduction relative to the baseline). Two researchers screened articles, assessed the risk of bias and extracted data independently. The included RCTs were analyzed using RevMan 5.3, which was provided by the Cochrane Collaboration.

Results

Compared with the placebo, mTOR inhibitors significantly reduced tumor volume in both angiomyolipoma (AML) (RR = 24.69, 95% CI = 3.51,173.41, P = 0.001) and subependymal giant cell astrocytoma (SEGA) (RR = 27.85, 95% CI = 1.74,444.82, P = 0.02). Compared with the placebo, mTOR inhibitors significantly reduced seizure frequency (RR = 2.12, 95% CI = 1.41,3.19, P = 0.0003). Regarding safety, compared with patients who did not receive mTOR inhibitors, those who did had a higher risk of suffering stomatitis (RR = 3.20, 95% CI = 1.49,6.86, P = 0.003). In contrast, patients who did and did not receive mTOR inhibitors experienced similar adverse events, such as upper respiratory tract infections (RR = 1.08, 95% CI = 0.81,1.45, P = 0.59) and nasopharyngitis (RR = 0.86, 95% CI = 0.60,1.21, P = 0.38).

Conclusion

In view of the efficacy and safety associated with tumor and seizure frequency in the TSC patients, mTOR inhibitors is a good therapeutic choice. Unlike the risks of upper respiratory tract infections and nasopharyngitis, mTOR inhibitors seem to increase the risk of stomatitis, mostly grade 1 and 2.
Literature
1.
go back to reference Osborne JP, Fryer A, Webb D. Epidemiology of tuberous sclerosis. Ann N Y Acad Sci. 2010;615(1):125–7. Osborne JP, Fryer A, Webb D. Epidemiology of tuberous sclerosis. Ann N Y Acad Sci. 2010;615(1):125–7.
2.
go back to reference Van SM, De HR, Hermans C, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science. 1997;277(5327):805–8.CrossRef Van SM, De HR, Hermans C, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science. 1997;277(5327):805–8.CrossRef
3.
go back to reference Consortium E C. 1 T S. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell. 1993;75(7):1305–15.CrossRef Consortium E C. 1 T S. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell. 1993;75(7):1305–15.CrossRef
4.
5.
go back to reference Hope N, Krueger Darcy A, International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49(4):243–54.CrossRef Hope N, Krueger Darcy A, International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49(4):243–54.CrossRef
6.
go back to reference Krueger DA, Northrup H. Tuberous sclerosis complex surveillance and management: recommendations of the 2012 international tuberous sclerosis complex consensus conference. Pediatr Neurol. 2013;49(4):243.CrossRef Krueger DA, Northrup H. Tuberous sclerosis complex surveillance and management: recommendations of the 2012 international tuberous sclerosis complex consensus conference. Pediatr Neurol. 2013;49(4):243.CrossRef
7.
go back to reference Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov. 2006;5(8):671.CrossRef Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov. 2006;5(8):671.CrossRef
8.
go back to reference Wyeth Pharmaceuticals Inc. Rapamune (sirolimus) oral solution and tablets [package insert]. Philadelphia: Wyeth Pharmaceuticals Inc; 2012. Wyeth Pharmaceuticals Inc. Rapamune (sirolimus) oral solution and tablets [package insert]. Philadelphia: Wyeth Pharmaceuticals Inc; 2012.
9.
go back to reference Kirchner DGI, Meierwiedenbach I, Manns MP. Clinical pharmacokinetics of Everolimus. Clin Pharmacokinet. 2004;43(2):83–95.CrossRef Kirchner DGI, Meierwiedenbach I, Manns MP. Clinical pharmacokinetics of Everolimus. Clin Pharmacokinet. 2004;43(2):83–95.CrossRef
10.
go back to reference Mahalati K, Kahan BD. Clinical pharmacokinetics of sirolimus. Clin Pharmacokinet. 2001;40(8):573–85.CrossRef Mahalati K, Kahan BD. Clinical pharmacokinetics of sirolimus. Clin Pharmacokinet. 2001;40(8):573–85.CrossRef
11.
go back to reference Yang H, Rudge DG, Koos JD, et al. mTOR kinase structure, mechanism and regulation by the rapamycin-binding domain. Nature. 2013;497(7448):217–23.CrossRef Yang H, Rudge DG, Koos JD, et al. mTOR kinase structure, mechanism and regulation by the rapamycin-binding domain. Nature. 2013;497(7448):217–23.CrossRef
12.
go back to reference Hatano T, Chikaraishi K, Inaba H, et al. Outcomes of everolimus treatment for renal angiomyolipoma associated with tuberous sclerosis complex: a single institution experience in Japan. Int J Urol. 2016;23(10):833.CrossRef Hatano T, Chikaraishi K, Inaba H, et al. Outcomes of everolimus treatment for renal angiomyolipoma associated with tuberous sclerosis complex: a single institution experience in Japan. Int J Urol. 2016;23(10):833.CrossRef
13.
go back to reference Trelinska J, Dachowska I, Kotulska K, et al. Factors affecting response to everolimus therapy for subependymal giant cell astrocytomas associated with tuberous sclerosis. Pediatr Blood Cancer. 2015;62(4):616–21.CrossRef Trelinska J, Dachowska I, Kotulska K, et al. Factors affecting response to everolimus therapy for subependymal giant cell astrocytomas associated with tuberous sclerosis. Pediatr Blood Cancer. 2015;62(4):616–21.CrossRef
14.
go back to reference Cinar SL, Kartal D, Bayram AK, et al. Topical sirolimus for the treatment of angiofibromas in tuberous sclerosis. Indian J Dermatol Venereol Leprol. 2017;83(1):27.CrossRef Cinar SL, Kartal D, Bayram AK, et al. Topical sirolimus for the treatment of angiofibromas in tuberous sclerosis. Indian J Dermatol Venereol Leprol. 2017;83(1):27.CrossRef
15.
go back to reference Zeng LH, Xu L, Gutmann DH, et al. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol. 2008;63(4):444–53.CrossRef Zeng LH, Xu L, Gutmann DH, et al. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol. 2008;63(4):444–53.CrossRef
16.
go back to reference Samueli S, Abraham K, Dressler A, et al. Efficacy and safety of Everolimus in children with TSC - associated epilepsy – pilot data from an open single-center prospective study. Orphanet J Rare Dis. 2016;11(1):145.CrossRef Samueli S, Abraham K, Dressler A, et al. Efficacy and safety of Everolimus in children with TSC - associated epilepsy – pilot data from an open single-center prospective study. Orphanet J Rare Dis. 2016;11(1):145.CrossRef
17.
go back to reference Rapamune. RxList: The internet drug index. 2013. Rapamune. RxList: The internet drug index. 2013.
18.
go back to reference Erol İ, Savaş T, Şekerci S, et al. Tuberous sclerosis complex; single center experience. Türk Pediatri Arşivi. 2015;50(1):51.CrossRef Erol İ, Savaş T, Şekerci S, et al. Tuberous sclerosis complex; single center experience. Türk Pediatri Arşivi. 2015;50(1):51.CrossRef
19.
go back to reference Sparagana SP, Wilkes DC, Thompson CE, et al. Optic nerve tumor in tuberous sclerosis complex is not responsive to sirolimus. Pediatr Neurol. 2010;42(6):443.CrossRef Sparagana SP, Wilkes DC, Thompson CE, et al. Optic nerve tumor in tuberous sclerosis complex is not responsive to sirolimus. Pediatr Neurol. 2010;42(6):443.CrossRef
20.
go back to reference Sasongko TH, Ismail NFD, Zabidi-Hussin Z. Rapamycin and rapalogs for tuberous sclerosis complex. Cochrane Database Syst Rev. 2016;7(7):CD011272.PubMed Sasongko TH, Ismail NFD, Zabidi-Hussin Z. Rapamycin and rapalogs for tuberous sclerosis complex. Cochrane Database Syst Rev. 2016;7(7):CD011272.PubMed
21.
go back to reference French JA, Lawson JA, Yapici Z, et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet. 2016;388(10056):2153.CrossRef French JA, Lawson JA, Yapici Z, et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet. 2016;388(10056):2153.CrossRef
22.
go back to reference Overwater IE, Rietman AB, Bindelsde HK, et al. Sirolimus for epilepsy in children with tuberous sclerosis complex: A randomized controlled trial. Neurology. 2016;87(10):1011–8.CrossRef Overwater IE, Rietman AB, Bindelsde HK, et al. Sirolimus for epilepsy in children with tuberous sclerosis complex: A randomized controlled trial. Neurology. 2016;87(10):1011–8.CrossRef
24.
go back to reference Franz DN, Belousova E, Sparagana S, et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2013;381(9861):125–32.CrossRef Franz DN, Belousova E, Sparagana S, et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2013;381(9861):125–32.CrossRef
25.
go back to reference Bissler John J, Kingswood J Christopher, Radzikowska Elżbieta et al. Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet, 2013;381(9869): 817–824. Bissler John J, Kingswood J Christopher, Radzikowska Elżbieta et al. Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet, 2013;381(9869): 817–824.
26.
go back to reference Krueger DA, Sadhwani A, Byars AW, et al. Everolimus for treatment of tuberous sclerosis complex-associated neuropsychiatric disorders. Ann Clin Transl Neurol. 2017;4(12):877–87.CrossRef Krueger DA, Sadhwani A, Byars AW, et al. Everolimus for treatment of tuberous sclerosis complex-associated neuropsychiatric disorders. Ann Clin Transl Neurol. 2017;4(12):877–87.CrossRef
27.
go back to reference Zonnenberg Bernard A, Neary Maureen P, Sheng DM, et al. Observational study of characteristics and clinical outcomes of Dutch patients with tuberous sclerosis complex and renal angiomyolipoma treated with everolimus. Plos One. 2018;13:e0204646.CrossRef Zonnenberg Bernard A, Neary Maureen P, Sheng DM, et al. Observational study of characteristics and clinical outcomes of Dutch patients with tuberous sclerosis complex and renal angiomyolipoma treated with everolimus. Plos One. 2018;13:e0204646.CrossRef
28.
go back to reference Brakemeier S, Vogt L, Adams L, et al. Treatment effect of mTOR-inhibition on tissue composition of renal angiomyolipomas in tuberous sclerosis complex (TSC). PLoS One. 2017;12(12):e0189132.CrossRef Brakemeier S, Vogt L, Adams L, et al. Treatment effect of mTOR-inhibition on tissue composition of renal angiomyolipomas in tuberous sclerosis complex (TSC). PLoS One. 2017;12(12):e0189132.CrossRef
29.
go back to reference Cai Y, Guo H, Wang W, et al. Assessing the outcomes of everolimus on renal angiomyolipoma associated with tuberous sclerosis complex in China: a two years trial. Orphanet J Rare Dis. 2018;13(1):43.CrossRef Cai Y, Guo H, Wang W, et al. Assessing the outcomes of everolimus on renal angiomyolipoma associated with tuberous sclerosis complex in China: a two years trial. Orphanet J Rare Dis. 2018;13(1):43.CrossRef
30.
go back to reference Krueger DA, Wilfong AA, Mays M, Talley CM, Agricola K, Tudor C, Capal J, Holland-Bouley K, Franz DN. Long-term treatment of epilepsy with everolimus in tuberous sclerosis. Neurology. 2016;87(23):2408–15.CrossRef Krueger DA, Wilfong AA, Mays M, Talley CM, Agricola K, Tudor C, Capal J, Holland-Bouley K, Franz DN. Long-term treatment of epilepsy with everolimus in tuberous sclerosis. Neurology. 2016;87(23):2408–15.CrossRef
31.
go back to reference Krueger DA, Capal JK, Paolo C, et al. Short-term Safety of mTOR Inhibitors in infants and very young children with Tuberous Sclerosis Complex (TSC): Multicentre Clinical Experience. Eur J Paediatr Neurol. 2018;S1090–3798(17):31969–4. Krueger DA, Capal JK, Paolo C, et al. Short-term Safety of mTOR Inhibitors in infants and very young children with Tuberous Sclerosis Complex (TSC): Multicentre Clinical Experience. Eur J Paediatr Neurol. 2018;S1090–3798(17):31969–4.
32.
go back to reference Martins F, de Oliveira MA, Wang Q, et al. A review of oral toxicity associated with mTOR inhibitor therapy in cancer patients. Oral Oncol. 2013;49(4):293–8.CrossRef Martins F, de Oliveira MA, Wang Q, et al. A review of oral toxicity associated with mTOR inhibitor therapy in cancer patients. Oral Oncol. 2013;49(4):293–8.CrossRef
33.
go back to reference Lo Muzio L, Arena C, Troiano G, et al. Oral stomatitis and mTOR inhibitors: a review of current evidence in 20,915 patients. Oral Dis. 2018;24(1–2):144–71.CrossRef Lo Muzio L, Arena C, Troiano G, et al. Oral stomatitis and mTOR inhibitors: a review of current evidence in 20,915 patients. Oral Dis. 2018;24(1–2):144–71.CrossRef
34.
go back to reference Sonis S, Andreotta PW, Lyng G. On the pathogenesis of mTOR inhibitor-associated stomatitis (mIAS)-studies using an organotypic model of the oral mucosa. Oral Dis. 2017;23(3):347–52.CrossRef Sonis S, Andreotta PW, Lyng G. On the pathogenesis of mTOR inhibitor-associated stomatitis (mIAS)-studies using an organotypic model of the oral mucosa. Oral Dis. 2017;23(3):347–52.CrossRef
35.
go back to reference Curatolo P, Bjørnvold M, Dill PE, et al. The role of mTOR inhibitors in the treatment of patients with tuberous sclerosis complex: evidence-based and expert opinions. Drugs. 2016;76(5):551–65.CrossRef Curatolo P, Bjørnvold M, Dill PE, et al. The role of mTOR inhibitors in the treatment of patients with tuberous sclerosis complex: evidence-based and expert opinions. Drugs. 2016;76(5):551–65.CrossRef
36.
go back to reference Neal FD, Andrew KD. mTOR inhibitor therapy as a disease modifying therapy for tuberous sclerosis complex. Am J Med Genet C Semin Med Genet. 2018;178:365–73.CrossRef Neal FD, Andrew KD. mTOR inhibitor therapy as a disease modifying therapy for tuberous sclerosis complex. Am J Med Genet C Semin Med Genet. 2018;178:365–73.CrossRef
37.
go back to reference Koenig MK, Hebert AA, Roberson J, et al. Topical rapamycin therapy to alleviate the cutaneous manifestations of tuberous sclerosis complex: a double-blind, randomized, controlled trial to evaluate the safety and efficacy of topically applied rapamycin. Drugs. 2012;12(3):121–6. Koenig MK, Hebert AA, Roberson J, et al. Topical rapamycin therapy to alleviate the cutaneous manifestations of tuberous sclerosis complex: a double-blind, randomized, controlled trial to evaluate the safety and efficacy of topically applied rapamycin. Drugs. 2012;12(3):121–6.
38.
go back to reference Koenig MK, Bell CS, Hebert AA, et al. Efficacy and safety of topical rapamycin in patients with facial Angiofibromas secondary to tuberous sclerosis complex: the TREATMENT randomized clinical trial. JAMA Dermatol. 2018;154(7):773–80.CrossRef Koenig MK, Bell CS, Hebert AA, et al. Efficacy and safety of topical rapamycin in patients with facial Angiofibromas secondary to tuberous sclerosis complex: the TREATMENT randomized clinical trial. JAMA Dermatol. 2018;154(7):773–80.CrossRef
39.
go back to reference Randell E, Mcnamara R, Davies DM, et al. The use of everolimus in the treatment of neurocognitive problems in tuberous sclerosis (TRON): study protocol for a randomised controlled trial. Trials. 2016;17(1):398.CrossRef Randell E, Mcnamara R, Davies DM, et al. The use of everolimus in the treatment of neurocognitive problems in tuberous sclerosis (TRON): study protocol for a randomised controlled trial. Trials. 2016;17(1):398.CrossRef
40.
go back to reference Yan X. Clinical effect and safety analysis of rapamycin in the treatment of tuberous sclerosis with epilepsy in children. World Latest Med Inf Dig. 2016;16(72):176. Yan X. Clinical effect and safety analysis of rapamycin in the treatment of tuberous sclerosis with epilepsy in children. World Latest Med Inf Dig. 2016;16(72):176.
41.
go back to reference Wataya-Kaneda M, Ohno Y, Fujita Y, et al. Sirolimus gel treatment vs placebo for facial Angiofibromas in patients with tuberous sclerosis complex: a randomized clinical trial. JAMA Dermatol. 2018;154(7):781–8.CrossRef Wataya-Kaneda M, Ohno Y, Fujita Y, et al. Sirolimus gel treatment vs placebo for facial Angiofibromas in patients with tuberous sclerosis complex: a randomized clinical trial. JAMA Dermatol. 2018;154(7):781–8.CrossRef
Metadata
Title
Efficacy and safety of mTOR inhibitors (rapamycin and its analogues) for tuberous sclerosis complex: a meta-analysis
Authors
Min Li
Ying Zhou
Chaoyang Chen
Ting Yang
Shuang Zhou
Shuqing Chen
Ye Wu
Yimin Cui
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2019
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-019-1012-x

Other articles of this Issue 1/2019

Orphanet Journal of Rare Diseases 1/2019 Go to the issue