Skip to main content
Top
Published in: BMC Neurology 1/2019

Open Access 01-12-2019 | Trisomy 21 | Research article

A biomechanical study of gait initiation in Down syndrome

Authors: Carolina Corsi, Veronica Cimolin, Paolo Capodaglio, Claudia Condoluci, Manuela Galli

Published in: BMC Neurology | Issue 1/2019

Login to get access

Abstract

Background

Gait Initiation (GI) is a functional task that challenges the balance control requiring weight shift and a transition from standing to walking. Individuals with Down Syndrome (DS) walk with low velocity, prolonged stance and shorter steps beside an increased support base. However, no studies performed GI analysis on this population. The aim of this study is to quantitatively characterize the GI task in subjects with DS compared with a typically developed control group.

Methods

Seventeen individuals with DS (17 to 40 years) and 19 healthy subjects (17 to 40 years) were enrolled in the study. Data were acquired using an optoelectronic motion capture system and force plates in order to measure the displacement and velocity of Center of Mass (CoM) and the trajectory of Center Of Pressure (CoP). All participants were asked to stand barefoot on the first force platform and received a verbal cue to begin walking for 6 gait initiation trials (three starting with each foot). The CoP duration, velocity, length and excursion were calculated during the anticipatory postural adjustments phases (APAs) and the locomotor (LOC) phase. For the analysis of the CoM, its displacements in antero-posterior (AP) and medio-lateral (ML) during the APAs and LOC phases. Statistical analysis was conducted to compare the two groups.

Results

Regarding CoP measures, when compared to control group, individuals with DS presented higher durations, lower velocities, longer lengths during the second APA and total phases, and shorter lengths during the first APA and LOC phases. The group with DS also presented longer CoP excursion during the second APA, whereas a shorter excursion was present during the first APA and LOC phases. The AP excursion in CoM is reduced in the participants with DS.

Conclusions

Our results could be useful in the rehabilitation of individuals with DS as they suggest to reinforce exercise programs to improve balance in AP and ML directions, which is demonstrated to be impaired in these subjects.
Literature
6.
go back to reference Sveljo O, Culic M, Koprivesk K, Lucic M. The functional neuroimaging evidence of cerebellar involvement in the simple cognitive tasks. Brain Imaging Behav. 2014;8(4):480–6.CrossRef Sveljo O, Culic M, Koprivesk K, Lucic M. The functional neuroimaging evidence of cerebellar involvement in the simple cognitive tasks. Brain Imaging Behav. 2014;8(4):480–6.CrossRef
10.
go back to reference Galli M, Cimolin V, Rigoldi C, Kleiner A, Condoluci C, Albertini G. Use of the gait profile score for the quantification of gait pattern in Down syndrome. J Dev Phys Disabil. 2015;27(5):609–15.CrossRef Galli M, Cimolin V, Rigoldi C, Kleiner A, Condoluci C, Albertini G. Use of the gait profile score for the quantification of gait pattern in Down syndrome. J Dev Phys Disabil. 2015;27(5):609–15.CrossRef
31.
go back to reference Capodaglio P, Cimolin V, Tacchini E, Parisio C, Galli M. Balance control and balance recovery in obesity. Curr Obes Rep. 2012;1:166–73.CrossRef Capodaglio P, Cimolin V, Tacchini E, Parisio C, Galli M. Balance control and balance recovery in obesity. Curr Obes Rep. 2012;1:166–73.CrossRef
Metadata
Title
A biomechanical study of gait initiation in Down syndrome
Authors
Carolina Corsi
Veronica Cimolin
Paolo Capodaglio
Claudia Condoluci
Manuela Galli
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Trisomy 21
Published in
BMC Neurology / Issue 1/2019
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-019-1288-4

Other articles of this Issue 1/2019

BMC Neurology 1/2019 Go to the issue