Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Research

Triosephosphate isomerase 1 may be a risk predictor in laryngeal squamous cell carcinoma: a multi-centered study integrating bulk RNA, single-cell RNA, and protein immunohistochemistry

Authors: Jian-Di Li, Yi Chen, Shu-Wen Jing, Li-Ting Wang, Yu-Hong Zhou, Zhi-Su Liu, Chang Song, Da-Zhi Li, Hai-Quan Wang, Zhi-Guang Huang, Yi-Wu Dang, Gang Chen, Jia-Yuan Luo

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Background

Although great progress has been made in anti-cancer therapy, the prognosis of laryngeal squamous cell carcinoma (LSCC) patients remains unsatisfied. Quantities of studies demonstrate that glycolytic reprograming is essential for the progression of cancers, where triosephosphate isomerase 1 (TPI1) serves as a catalytic enzyme. However, the clinicopathological significance and potential biological functions of TPI1 underlying LSCC remains obscure.

Methods

We collected in-house 82 LSCC tissue specimens and 56 non-tumor tissue specimens. Tissue microarrays (TMA) and immunohistochemical (IHC) experiments were performed. External LSCC microarrays and bulk RNA sequencing data were integrated to evaluate the expression of TPI1. We used a log-rank test and the CIBERSORT algorithm to assess the prognostic value of TPI1 and its association with the LSCC microenvironment. Malignant laryngeal epithelial cells and immune-stromal cells were identified using inferCNV and CellTypist. We conducted a comprehensive analysis to elucidate the molecular functions of TPI1 in LSCC tissue and single cells using Pearson correlation analysis, high dimensional weighted gene co-expression analysis, gene set enrichment analysis, and clustered regularly interspaced short palindromic repeats (CRISPR) screen. We explored intercellular communication patterns between LSCC single cells and immune-stromal cells and predicted several therapeutic agents targeting TPI1.

Results

Based on the in-house TMA and IHC analysis, TPI1 protein was found to have a strong positive expression in the nucleus of LSCC cells but only weakly positive activity in the cytoplasm of normal laryngeal cells (p < 0.0001). Further confirmation of elevated TPI1 mRNA expression was obtained from external datasets, comparing 251 LSCC tissue samples to 136 non-LSCC tissue samples (standardized mean difference = 1.06). The upregulated TPI1 mRNA demonstrated a high discriminative ability between LSCC and non-LSCC tissue (area under the curve = 0.91; sensitivity = 0.87; specificity = 0.79), suggesting its potential as a predictive marker for poor prognosis (p = 0.037). Lower infiltration abundance was found for plasma cells, naïve B cells, monocytes, and neutrophils in TPI-high expression LSCC tissue. Glycolysis and cell cycle were significantly enriched pathways for both LSCC tissue and single cells, where heat shock protein family B member 1, TPI1, and enolase 1 occupied a central position. Four outgoing communication patterns and two incoming communication patterns were identified from the intercellular communication networks. TPI1 was predicted as an oncogene in LSCC, with CRISPR scores less than -1 across 71.43% of the LSCC cell lines. TPI1 was positively correlated with the half maximal inhibitory concentration of gemcitabine and cladribine.

Conclusions

TPI1 is dramatically overexpressed in LSCC than in normal tissue, and the high expression of TPI1 may promote LSCC deterioration through its metabolic and non-metabolic functions. This study contributes to advancing our knowledge of LSCC pathogenesis and may have implications for the development of targeted therapies in the future.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. 2021;71(3):209–49.PubMed Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. 2021;71(3):209–49.PubMed
2.
go back to reference Xia C, Dong X, Li H, Cao M, Sun D, He S, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J. 2022;135(5):584–90.PubMedPubMedCentralCrossRef Xia C, Dong X, Li H, Cao M, Sun D, He S, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J. 2022;135(5):584–90.PubMedPubMedCentralCrossRef
3.
go back to reference Wang P, Li GY, Zhou L, Jiang HL, Yang Y, Wu HT. Exosomes from M2 macrophages promoted glycolysis in FaDu cells by inhibiting PDLIM2 expression to stabilize PFKL. Neoplasma. 2022;69:5.CrossRef Wang P, Li GY, Zhou L, Jiang HL, Yang Y, Wu HT. Exosomes from M2 macrophages promoted glycolysis in FaDu cells by inhibiting PDLIM2 expression to stabilize PFKL. Neoplasma. 2022;69:5.CrossRef
4.
go back to reference Liberale C, Soloperto D, Marchioni A, Monzani D, Sacchetto L. Updates on larynx cancer: risk factors and oncogenesis. Int J Mol Sci. 2023;24:16.CrossRef Liberale C, Soloperto D, Marchioni A, Monzani D, Sacchetto L. Updates on larynx cancer: risk factors and oncogenesis. Int J Mol Sci. 2023;24:16.CrossRef
5.
go back to reference Huang Q, Guo Y, Shen Y, Hsueh CY, Tao L, Zhang M, et al. Epidemiological, clinical, and oncological outcomes of non-alcohol drinking and non-smoking laryngeal squamous cell carcinoma patients: a distinct entity. Technol Cancer Res Treat. 2022;21:15330338221133690.PubMedPubMedCentralCrossRef Huang Q, Guo Y, Shen Y, Hsueh CY, Tao L, Zhang M, et al. Epidemiological, clinical, and oncological outcomes of non-alcohol drinking and non-smoking laryngeal squamous cell carcinoma patients: a distinct entity. Technol Cancer Res Treat. 2022;21:15330338221133690.PubMedPubMedCentralCrossRef
6.
go back to reference Li W, Chen Y, Nie X. Regulatory mechanisms of lncRNAs and their target gene signaling pathways in laryngeal squamous cell carcinoma. Front Pharmacol. 2020;11:1140.PubMedPubMedCentralCrossRef Li W, Chen Y, Nie X. Regulatory mechanisms of lncRNAs and their target gene signaling pathways in laryngeal squamous cell carcinoma. Front Pharmacol. 2020;11:1140.PubMedPubMedCentralCrossRef
7.
go back to reference Liu Y, Gao Z, Peng C, Jiang X. Construction of a 10-gene prognostic score model of predicting recurrence for laryngeal cancer. Eur J Med Res. 2022;27(1):249.PubMedPubMedCentralCrossRef Liu Y, Gao Z, Peng C, Jiang X. Construction of a 10-gene prognostic score model of predicting recurrence for laryngeal cancer. Eur J Med Res. 2022;27(1):249.PubMedPubMedCentralCrossRef
8.
go back to reference Wang J, Wang N, Zheng Z, Che Y, Suzuki M, Kano S, et al. Exosomal lncRNA HOTAIR induce macrophages to M2 polarization via PI3K/ p-AKT /AKT pathway and promote EMT and metastasis in laryngeal squamous cell carcinoma. BMC Cancer. 2022;22(1):1208.PubMedPubMedCentralCrossRef Wang J, Wang N, Zheng Z, Che Y, Suzuki M, Kano S, et al. Exosomal lncRNA HOTAIR induce macrophages to M2 polarization via PI3K/ p-AKT /AKT pathway and promote EMT and metastasis in laryngeal squamous cell carcinoma. BMC Cancer. 2022;22(1):1208.PubMedPubMedCentralCrossRef
9.
go back to reference Jiang FC, Luo JY, Dang YW, Lu HP, Li DM, Huang ZG, et al. Downregulation of zinc finger protein 71 in laryngeal squamous cell carcinoma tissues and its potential molecular mechanism and clinical significance: a study based on immunohistochemistry staining and data mining. World J Surg Oncol. 2022;20(1):359.PubMedPubMedCentralCrossRef Jiang FC, Luo JY, Dang YW, Lu HP, Li DM, Huang ZG, et al. Downregulation of zinc finger protein 71 in laryngeal squamous cell carcinoma tissues and its potential molecular mechanism and clinical significance: a study based on immunohistochemistry staining and data mining. World J Surg Oncol. 2022;20(1):359.PubMedPubMedCentralCrossRef
10.
go back to reference Gao W, Zhang Y, Luo H, Niu M, Zheng X, Hu W, et al. Targeting SKA3 suppresses the proliferation and chemoresistance of laryngeal squamous cell carcinoma via impairing PLK1-AKT axis-mediated glycolysis. Cell Death Dis. 2020;11(10):919.PubMedPubMedCentralCrossRef Gao W, Zhang Y, Luo H, Niu M, Zheng X, Hu W, et al. Targeting SKA3 suppresses the proliferation and chemoresistance of laryngeal squamous cell carcinoma via impairing PLK1-AKT axis-mediated glycolysis. Cell Death Dis. 2020;11(10):919.PubMedPubMedCentralCrossRef
11.
go back to reference Hui L, Zhang J, Guo X. MiR-125b-5p suppressed the glycolysis of laryngeal squamous cell carcinoma by down-regulating hexokinase-2. Biomed Pharmacother. 2018;103:1194–201.PubMedCrossRef Hui L, Zhang J, Guo X. MiR-125b-5p suppressed the glycolysis of laryngeal squamous cell carcinoma by down-regulating hexokinase-2. Biomed Pharmacother. 2018;103:1194–201.PubMedCrossRef
12.
go back to reference Li L, Xu H, Qu L, Xu K, Liu X. Daidzin inhibits hepatocellular carcinoma survival by interfering with the glycolytic/gluconeogenic pathway through downregulation of TPI1. BioFactors (Oxford, England). 2022;48(4):883–96.PubMedCrossRef Li L, Xu H, Qu L, Xu K, Liu X. Daidzin inhibits hepatocellular carcinoma survival by interfering with the glycolytic/gluconeogenic pathway through downregulation of TPI1. BioFactors (Oxford, England). 2022;48(4):883–96.PubMedCrossRef
13.
go back to reference Liu BHM, Tey SK, Mao X, Ma APY, Yeung CLS, Wong SWK, et al. TPI1-reduced extracellular vesicles mediated by Rab20 downregulation promotes aerobic glycolysis to drive hepatocarcinogenesis. J Extracell Ves. 2021;10(10): e12135.CrossRef Liu BHM, Tey SK, Mao X, Ma APY, Yeung CLS, Wong SWK, et al. TPI1-reduced extracellular vesicles mediated by Rab20 downregulation promotes aerobic glycolysis to drive hepatocarcinogenesis. J Extracell Ves. 2021;10(10): e12135.CrossRef
14.
go back to reference Zhang JJ, Fan TT, Mao YZ, Hou JL, Wang M, Zhang M, et al. Nuclear dihydroxyacetone phosphate signals nutrient sufficiency and cell cycle phase to global histone acetylation. Nat Metab. 2021;3(6):859–75.PubMedCrossRef Zhang JJ, Fan TT, Mao YZ, Hou JL, Wang M, Zhang M, et al. Nuclear dihydroxyacetone phosphate signals nutrient sufficiency and cell cycle phase to global histone acetylation. Nat Metab. 2021;3(6):859–75.PubMedCrossRef
15.
go back to reference Knobloch TJ, Ryan NM, Bruschweiler-Li L, Wang C, Bernier MC, Somogyi A, et al. Metabolic Regulation of Glycolysis and AMP activated protein kinase pathways during black raspberry-mediated oral cancer chemoprevention. Metabolites. 2019;9:7.CrossRef Knobloch TJ, Ryan NM, Bruschweiler-Li L, Wang C, Bernier MC, Somogyi A, et al. Metabolic Regulation of Glycolysis and AMP activated protein kinase pathways during black raspberry-mediated oral cancer chemoprevention. Metabolites. 2019;9:7.CrossRef
16.
go back to reference Wang C, Fu M, Mani S, Wadler S, Senderowicz AM, Pestell RG. Histone acetylation and the cell-cycle in cancer. Front Biosci. 2001;6:D610–29.PubMedCrossRef Wang C, Fu M, Mani S, Wadler S, Senderowicz AM, Pestell RG. Histone acetylation and the cell-cycle in cancer. Front Biosci. 2001;6:D610–29.PubMedCrossRef
17.
go back to reference Lin M, Sade-Feldman M, Wirth L, Lawrence MS, Faden DL. Single-cell transcriptomic profiling for inferring tumor origin and mechanisms of therapeutic resistance. NPJ Prec Oncol. 2022;6(1):71.CrossRef Lin M, Sade-Feldman M, Wirth L, Lawrence MS, Faden DL. Single-cell transcriptomic profiling for inferring tumor origin and mechanisms of therapeutic resistance. NPJ Prec Oncol. 2022;6(1):71.CrossRef
18.
go back to reference Domínguez Conde C, Xu C, Jarvis LB, Rainbow DB, Wells SB, Gomes T, et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science. 2022;376(6594):eab15197.CrossRef Domínguez Conde C, Xu C, Jarvis LB, Rainbow DB, Wells SB, Gomes T, et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science. 2022;376(6594):eab15197.CrossRef
19.
go back to reference Kumar M, Bowers RR, Delaney JR. Single-cell analysis of copy-number alterations in serous ovarian cancer reveals substantial heterogeneity in both low- and high-grade tumors. Cell Cycle (Georgetown, Tex). 2020;19(22):3154–66.PubMedCrossRef Kumar M, Bowers RR, Delaney JR. Single-cell analysis of copy-number alterations in serous ovarian cancer reveals substantial heterogeneity in both low- and high-grade tumors. Cell Cycle (Georgetown, Tex). 2020;19(22):3154–66.PubMedCrossRef
20.
go back to reference Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, et al. IOBR: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front Immunol. 2021;12: 687975.PubMedPubMedCentralCrossRef Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, et al. IOBR: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front Immunol. 2021;12: 687975.PubMedPubMedCentralCrossRef
21.
go back to reference Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference and analysis of cell-cell communication using cell chat. Nat Commun. 2021;12(1):1088.PubMedPubMedCentralCrossRef Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference and analysis of cell-cell communication using cell chat. Nat Commun. 2021;12(1):1088.PubMedPubMedCentralCrossRef
22.
go back to reference Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11):1083–6.PubMedPubMedCentralCrossRef Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11):1083–6.PubMedPubMedCentralCrossRef
23.
go back to reference Song L, Zhang S, Yu S, Ma F, Wang B, Zhang C, et al. Cellular heterogeneity landscape in laryngeal squamous cell carcinoma. Int J Cancer. 2020;147(10):2879–90.PubMedCrossRef Song L, Zhang S, Yu S, Ma F, Wang B, Zhang C, et al. Cellular heterogeneity landscape in laryngeal squamous cell carcinoma. Int J Cancer. 2020;147(10):2879–90.PubMedCrossRef
24.
go back to reference Morabito S, Miyoshi E, Michael N, Shahin S, Martini AC, Head E, et al. Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s disease. Nat Genet. 2021;53(8):1143–55.PubMedPubMedCentralCrossRef Morabito S, Miyoshi E, Michael N, Shahin S, Martini AC, Head E, et al. Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s disease. Nat Genet. 2021;53(8):1143–55.PubMedPubMedCentralCrossRef
25.
go back to reference Morabito S, Reese F, Rahimzadeh N, Miyoshi E, Swarup V. High dimensional co-expression networks enable discovery of transcriptomic drivers in complex biological systems. bioRxiv. 2022:2022.09.22.509094. Morabito S, Reese F, Rahimzadeh N, Miyoshi E, Swarup V. High dimensional co-expression networks enable discovery of transcriptomic drivers in complex biological systems. bioRxiv. 2022:2022.09.22.509094.
26.
go back to reference Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–7.PubMedPubMedCentralCrossRef Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–7.PubMedPubMedCentralCrossRef
27.
go back to reference Krill-Burger JM, Dempster JM, Borah AA, Paolella BR, Root DE, Golub TR, et al. Partial gene suppression improves identification of cancer vulnerabilities when CRISPR-Cas9 knockout is pan-lethal. Genome Biol. 2023;24(1):192.PubMedPubMedCentralCrossRef Krill-Burger JM, Dempster JM, Borah AA, Paolella BR, Root DE, Golub TR, et al. Partial gene suppression improves identification of cancer vulnerabilities when CRISPR-Cas9 knockout is pan-lethal. Genome Biol. 2023;24(1):192.PubMedPubMedCentralCrossRef
28.
go back to reference Luna A, Elloumi F, Varma S, Wang Y, Rajapakse VN, Aladjem MI, et al. Cell Miner Cross-Database (CellMinerCDB) version 12: exploration of patient-derived cancer cell line pharmacogenomics. Nucleic Acids Res. 2021;49(D1):1083–93.CrossRef Luna A, Elloumi F, Varma S, Wang Y, Rajapakse VN, Aladjem MI, et al. Cell Miner Cross-Database (CellMinerCDB) version 12: exploration of patient-derived cancer cell line pharmacogenomics. Nucleic Acids Res. 2021;49(D1):1083–93.CrossRef
29.
go back to reference Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21(10):669–80.PubMedCrossRef Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21(10):669–80.PubMedCrossRef
30.
go back to reference Abbaszadeh Z, Çeşmeli S, Biray AÇ. Crucial players in glycolysis: cancer progress. Gene. 2020;726: 144158.PubMedCrossRef Abbaszadeh Z, Çeşmeli S, Biray AÇ. Crucial players in glycolysis: cancer progress. Gene. 2020;726: 144158.PubMedCrossRef
31.
go back to reference Guo Y, Li Q, Ren W, Wu H, Wang C, Li X, et al. Quantitative Proteomics Reveals Down-Regulated Glycolysis/Gluconeogenesis in the Large-Duct Type Intrahepatic Cholangiocarcinoma. J Proteome Res. 2022. Guo Y, Li Q, Ren W, Wu H, Wang C, Li X, et al. Quantitative Proteomics Reveals Down-Regulated Glycolysis/Gluconeogenesis in the Large-Duct Type Intrahepatic Cholangiocarcinoma. J Proteome Res. 2022.
32.
go back to reference Yu WL, Yu G, Dong H, Chen K, Xie J, Yu H, et al. Proteomics analysis identified TPI1 as a novel biomarker for predicting recurrence of intrahepatic cholangiocarcinoma. J Gastroenterol. 2020;55(12):1171–82.PubMedCrossRef Yu WL, Yu G, Dong H, Chen K, Xie J, Yu H, et al. Proteomics analysis identified TPI1 as a novel biomarker for predicting recurrence of intrahepatic cholangiocarcinoma. J Gastroenterol. 2020;55(12):1171–82.PubMedCrossRef
33.
go back to reference Sun H, Zhang D, Huang C, Guo Y, Yang Z, Yao N, et al. Hypoxic microenvironment induced spatial transcriptome changes in pancreatic cancer. Cancer Biol Med. 2021;18(2):616–30.PubMedPubMedCentralCrossRef Sun H, Zhang D, Huang C, Guo Y, Yang Z, Yao N, et al. Hypoxic microenvironment induced spatial transcriptome changes in pancreatic cancer. Cancer Biol Med. 2021;18(2):616–30.PubMedPubMedCentralCrossRef
34.
go back to reference Oaxaca-Camacho AR, Ochoa-Mojica OR, Aguilar-Lemarroy A, Jave-Suárez LF, Muñoz-Valle JF, Padilla-Camberos E, et al. Serum analysis of women with early-stage breast cancer using a mini-array of tumor-associated antigens. Biosensors. 2020;10:10.CrossRef Oaxaca-Camacho AR, Ochoa-Mojica OR, Aguilar-Lemarroy A, Jave-Suárez LF, Muñoz-Valle JF, Padilla-Camberos E, et al. Serum analysis of women with early-stage breast cancer using a mini-array of tumor-associated antigens. Biosensors. 2020;10:10.CrossRef
35.
go back to reference Duan Y, Li J, Wang F, Wei J, Yang Z, Sun M, et al. Protein modifications throughout the lung cancer proteome unravel the cancer-specific regulation of glycolysis. Cell Rep. 2021;37(12): 110137.PubMedCrossRef Duan Y, Li J, Wang F, Wei J, Yang Z, Sun M, et al. Protein modifications throughout the lung cancer proteome unravel the cancer-specific regulation of glycolysis. Cell Rep. 2021;37(12): 110137.PubMedCrossRef
36.
go back to reference Yang X, Ye C, Zheng H, Dai C, Zhu Y. Systemic analyses of the expression of TPI1 and its associations with tumor microenvironment in lung adenocarcinoma and squamous cell carcinoma. Dis Markers. 2022;2022:6258268.PubMedPubMedCentral Yang X, Ye C, Zheng H, Dai C, Zhu Y. Systemic analyses of the expression of TPI1 and its associations with tumor microenvironment in lung adenocarcinoma and squamous cell carcinoma. Dis Markers. 2022;2022:6258268.PubMedPubMedCentral
37.
go back to reference Liu P, Sun SJ, Ai YJ, Feng X, Zheng YM, Gao Y, et al. Elevated nuclear localization of glycolytic enzyme TPI1 promotes lung adenocarcinoma and enhances chemoresistance. Cell Death Dis. 2022;13(3):205.PubMedPubMedCentralCrossRef Liu P, Sun SJ, Ai YJ, Feng X, Zheng YM, Gao Y, et al. Elevated nuclear localization of glycolytic enzyme TPI1 promotes lung adenocarcinoma and enhances chemoresistance. Cell Death Dis. 2022;13(3):205.PubMedPubMedCentralCrossRef
38.
go back to reference Wilkie MD, Anaam EA, Lau AS, Rubbi CP, Vlatkovic N, Jones TM, et al. Metabolic plasticity and combinatorial radiosensitisation strategies in human papillomavirus-positive squamous cell carcinoma of the head and neck cell lines. Cancers. 2021;13:19.CrossRef Wilkie MD, Anaam EA, Lau AS, Rubbi CP, Vlatkovic N, Jones TM, et al. Metabolic plasticity and combinatorial radiosensitisation strategies in human papillomavirus-positive squamous cell carcinoma of the head and neck cell lines. Cancers. 2021;13:19.CrossRef
39.
go back to reference Chandel V, Raj S, Kumar P, Gupta S, Dhasmana A, Kesari KK, et al. Metabolic regulation in HPV associated head and neck squamous cell carcinoma. Life Sci. 2020;258: 118236.PubMedCrossRef Chandel V, Raj S, Kumar P, Gupta S, Dhasmana A, Kesari KK, et al. Metabolic regulation in HPV associated head and neck squamous cell carcinoma. Life Sci. 2020;258: 118236.PubMedCrossRef
40.
go back to reference Chandel V, Maru S, Kumar A, Kumar A, Sharma A, Rathi B, et al. Role of monocarboxylate transporters in head and neck squamous cell carcinoma. Life Sci. 2021;279: 119709.PubMedCrossRef Chandel V, Maru S, Kumar A, Kumar A, Sharma A, Rathi B, et al. Role of monocarboxylate transporters in head and neck squamous cell carcinoma. Life Sci. 2021;279: 119709.PubMedCrossRef
41.
go back to reference Nguyen JH, Chung JD, Lynch GS, Ryall JG. The microenvironment is a critical regulator of muscle stem cell activation and proliferation. Front Cell Dev Biol. 2019;7:254.PubMedPubMedCentralCrossRef Nguyen JH, Chung JD, Lynch GS, Ryall JG. The microenvironment is a critical regulator of muscle stem cell activation and proliferation. Front Cell Dev Biol. 2019;7:254.PubMedPubMedCentralCrossRef
42.
go back to reference Choi JE, Sebastian C, Ferrer CM, Lewis CA, Sade-Feldman M, LaSalle T, et al. A unique subset of glycolytic tumour-propagating cells drives squamous cell carcinoma. Nat Metab. 2021;3(2):182–95.PubMedPubMedCentralCrossRef Choi JE, Sebastian C, Ferrer CM, Lewis CA, Sade-Feldman M, LaSalle T, et al. A unique subset of glycolytic tumour-propagating cells drives squamous cell carcinoma. Nat Metab. 2021;3(2):182–95.PubMedPubMedCentralCrossRef
43.
go back to reference Zhang Y, Zhang H, Dong J, Zhao P, Hao F, Han H, et al. CAPRIN1 enhances chemoresistance and glycolysis in laryngeal squamous cell carcinoma via regulation of ZIC5. J Oncol. 2022;2022:6160539.PubMedPubMedCentral Zhang Y, Zhang H, Dong J, Zhao P, Hao F, Han H, et al. CAPRIN1 enhances chemoresistance and glycolysis in laryngeal squamous cell carcinoma via regulation of ZIC5. J Oncol. 2022;2022:6160539.PubMedPubMedCentral
44.
go back to reference Takahashi H, Kawabata-Iwakawa R, Ida S, Mito I, Tada H, Chikamatsu K. Upregulated glycolysis correlates with tumor progression and immune evasion in head and neck squamous cell carcinoma. Sci Rep. 2021;11(1):17789.PubMedPubMedCentralCrossRef Takahashi H, Kawabata-Iwakawa R, Ida S, Mito I, Tada H, Chikamatsu K. Upregulated glycolysis correlates with tumor progression and immune evasion in head and neck squamous cell carcinoma. Sci Rep. 2021;11(1):17789.PubMedPubMedCentralCrossRef
45.
go back to reference Zhao L, Zheng Y, Zhang L, Su L. E2F1-induced FTH1P3 promoted cell viability and glycolysis through miR-377-3p/LDHA Axis in laryngeal squamous cell carcinoma. Cancer Biother Radiopharm. 2022;37(4):276–86.PubMed Zhao L, Zheng Y, Zhang L, Su L. E2F1-induced FTH1P3 promoted cell viability and glycolysis through miR-377-3p/LDHA Axis in laryngeal squamous cell carcinoma. Cancer Biother Radiopharm. 2022;37(4):276–86.PubMed
46.
go back to reference Li HM, Yang JG, Liu ZJ, Wang WM, Yu ZL, Ren JG, et al. Blockage of glycolysis by targeting PFKFB3 suppresses tumor growth and metastasis in head and neck squamous cell carcinoma. J Exp Clin Cancer Res. 2017;36(1):7.PubMedPubMedCentralCrossRef Li HM, Yang JG, Liu ZJ, Wang WM, Yu ZL, Ren JG, et al. Blockage of glycolysis by targeting PFKFB3 suppresses tumor growth and metastasis in head and neck squamous cell carcinoma. J Exp Clin Cancer Res. 2017;36(1):7.PubMedPubMedCentralCrossRef
47.
go back to reference Xu H, Li L, Qu L, Tu J, Sun X, Liu X, et al. Atractylenolide-1 affects glycolysis/gluconeogenesis by downregulating the expression of TPI1 and GPI to inhibit the proliferation and invasion of human triple-negative breast cancer cells. Phytotherapy Res. 2022. Xu H, Li L, Qu L, Tu J, Sun X, Liu X, et al. Atractylenolide-1 affects glycolysis/gluconeogenesis by downregulating the expression of TPI1 and GPI to inhibit the proliferation and invasion of human triple-negative breast cancer cells. Phytotherapy Res. 2022.
48.
go back to reference Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23(1):74–88.PubMedCrossRef Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23(1):74–88.PubMedCrossRef
49.
50.
go back to reference Ueno M, Kariya R, Gunya S, Cheevapruk K, Okada S. Midkine inhibitor (iMDK) induces apoptosis of primary effusion lymphoma via G2/M cell cycle arrest. Leuk Res. 2022;116: 106826.PubMedCrossRef Ueno M, Kariya R, Gunya S, Cheevapruk K, Okada S. Midkine inhibitor (iMDK) induces apoptosis of primary effusion lymphoma via G2/M cell cycle arrest. Leuk Res. 2022;116: 106826.PubMedCrossRef
51.
go back to reference Nagashima M, D’Cruz TS, Danku AE, Hesse D, Sifuentes C, Raymond PA, et al. Midkine-a is required for cell cycle progression of müller glia during neuronal regeneration in the vertebrate retina. J Neurosci. 2020;40(6):1232–47.PubMedPubMedCentralCrossRef Nagashima M, D’Cruz TS, Danku AE, Hesse D, Sifuentes C, Raymond PA, et al. Midkine-a is required for cell cycle progression of müller glia during neuronal regeneration in the vertebrate retina. J Neurosci. 2020;40(6):1232–47.PubMedPubMedCentralCrossRef
52.
go back to reference Jin X, Wang D, Lei M, Guo Y, Cui Y, Chen F, et al. TPI1 activates the PI3K/AKT/mTOR signaling pathway to induce breast cancer progression by stabilizing CDCA5. J Transl Med. 2022;20(1):191.PubMedPubMedCentralCrossRef Jin X, Wang D, Lei M, Guo Y, Cui Y, Chen F, et al. TPI1 activates the PI3K/AKT/mTOR signaling pathway to induce breast cancer progression by stabilizing CDCA5. J Transl Med. 2022;20(1):191.PubMedPubMedCentralCrossRef
53.
go back to reference Zhang L, Wang B, Wang ZS, Guo YL, Shen H. Construction of glycolytic regulator gene signature to predict the prognosis and tumor immune cell infiltration levels for prostate cancer. Comput Math Methods Med. 2022;2022:9273559.PubMedPubMedCentral Zhang L, Wang B, Wang ZS, Guo YL, Shen H. Construction of glycolytic regulator gene signature to predict the prognosis and tumor immune cell infiltration levels for prostate cancer. Comput Math Methods Med. 2022;2022:9273559.PubMedPubMedCentral
54.
go back to reference Hamaguchi T, Iizuka N, Tsunedomi R, Hamamoto Y, Miyamoto T, Iida M, et al. Glycolysis module activated by hypoxia-inducible factor 1alpha is related to the aggressive phenotype of hepatocellular carcinoma. Int J Oncol. 2008;33(4):725–31.PubMed Hamaguchi T, Iizuka N, Tsunedomi R, Hamamoto Y, Miyamoto T, Iida M, et al. Glycolysis module activated by hypoxia-inducible factor 1alpha is related to the aggressive phenotype of hepatocellular carcinoma. Int J Oncol. 2008;33(4):725–31.PubMed
55.
go back to reference Konieczna A, Szczepańska A, Sawiuk K, Węgrzyn G, Łyżeń R. Effects of partial silencing of genes coding for enzymes involved in glycolysis and tricarboxylic acid cycle on the enterance of human fibroblasts to the S phase. BMC Cell Biol. 2015;16:16.PubMedPubMedCentralCrossRef Konieczna A, Szczepańska A, Sawiuk K, Węgrzyn G, Łyżeń R. Effects of partial silencing of genes coding for enzymes involved in glycolysis and tricarboxylic acid cycle on the enterance of human fibroblasts to the S phase. BMC Cell Biol. 2015;16:16.PubMedPubMedCentralCrossRef
Metadata
Title
Triosephosphate isomerase 1 may be a risk predictor in laryngeal squamous cell carcinoma: a multi-centered study integrating bulk RNA, single-cell RNA, and protein immunohistochemistry
Authors
Jian-Di Li
Yi Chen
Shu-Wen Jing
Li-Ting Wang
Yu-Hong Zhou
Zhi-Su Liu
Chang Song
Da-Zhi Li
Hai-Quan Wang
Zhi-Guang Huang
Yi-Wu Dang
Gang Chen
Jia-Yuan Luo
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01568-8

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue