Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2021

01-12-2021 | Trichomoniasis | Research article

Antimicrobial properties of tomato leaves, stems, and fruit and their relationship to chemical composition

Authors: Christina C. Tam, Kevin Nguyen, Daniel Nguyen, Sabrina Hamada, Okhun Kwon, Irene Kuang, Steven Gong, Sydney Escobar, Max Liu, Jihwan Kim, Tiffany Hou, Justin Tam, Luisa W. Cheng, Jong H. Kim, Kirkwood M. Land, Mendel Friedman

Published in: BMC Complementary Medicine and Therapies | Issue 1/2021

Login to get access

Abstract

Background

We previously reported that the tomato glycoalkaloid tomatine inhibited the growth of Trichomonas vaginalis strain G3, Tritrichomonas foetus strain D1, and Tritrichomonas foetus-like strain C1 that cause disease in humans and farm and domesticated animals. The increasing prevalence of antibiotic resistance requires development of new tools to enhance or replace medicinal antibiotics.

Methods

Wild tomato plants were harvested and divided into leaves, stems, and fruit of different colors: green, yellow, and red. Samples were freeze dried and ground with a handheld mill. The resulting powders were evaluated for their potential anti-microbial effects on protozoan parasites, bacteria, and fungi. A concentration of 0.02% (w/v) was used for the inhibition of protozoan parasites. A high concentration of 10% (w/v) solution was tested for bacteria and fungi as an initial screen to evaluate potential anti-microbial activity and results using this high concentration limits its clinical relevance.

Results

Natural powders derived from various parts of tomato plants were all effective in inhibiting the growth of the three trichomonads to varying degrees. Test samples from leaves, stems, and immature ‘green’ tomato peels and fruit, all containing tomatine, were more effective as an inhibitor of the D1 strain than those prepared from yellow and red tomato peels which lack tomatine. Chlorogenic acid and quercetin glycosides were present in all parts of the plant and fruit, while caffeic acid was only found in the fruit peels. Any correlation between plant components and inhibition of the G3 and C1 strains was not apparent, although all the powders were variably effective. Tomato leaf was the most effective powder in all strains, and was also the highest in tomatine. S. enterica showed a minor susceptibility while B. cereus and C. albicans fungi both showed a significant growth inhibition with some of the test powders. The powders inhibited growth of the pathogens without affecting beneficial lactobacilli found in the normal flora of the vagina.

Conclusions

The results suggest that powders prepared from tomato leaves, stems, and green tomato peels and to a lesser extent from peels from yellow and red tomatoes offer potential multiple health benefits against infections caused by pathogenic protozoa, bacteria, and fungi, without affecting beneficial lactobacilli that also reside in the normal flora of the vagina.
Literature
9.
go back to reference Noritake SM, Liu J, Kanetake S, Levin CE, Tam C, Cheng LW, et al. Phytochemical-rich foods inhibit the growth of pathogenic trichomonads. BMC Complement Altern Med. 2017;17(1):No. 461.CrossRefPubMed Noritake SM, Liu J, Kanetake S, Levin CE, Tam C, Cheng LW, et al. Phytochemical-rich foods inhibit the growth of pathogenic trichomonads. BMC Complement Altern Med. 2017;17(1):No. 461.CrossRefPubMed
11.
go back to reference Friedman M, Xu A, Lee R, Nguyen DN, Phan TA, Hamada SM, et al. The inhibitory activity of anthraquinones against pathogenic protozoa, bacteria, and fungi and the relationship to structure. Molecules. 2020;25(13):E3101.CrossRefPubMed Friedman M, Xu A, Lee R, Nguyen DN, Phan TA, Hamada SM, et al. The inhibitory activity of anthraquinones against pathogenic protozoa, bacteria, and fungi and the relationship to structure. Molecules. 2020;25(13):E3101.CrossRefPubMed
13.
go back to reference Friedman M, Kozukue N, Mizuno M, Sakakibara H, Choi S-H, Fujitake M, et al. The analysis of the content of biologically active phenolic compounds, flavonoids, and glycoalkaloids in harvested red, yellow, and green tomatoes, tomato leaves, and tomato stems. Currt Top Phytochem. 2019;15:43–53. Friedman M, Kozukue N, Mizuno M, Sakakibara H, Choi S-H, Fujitake M, et al. The analysis of the content of biologically active phenolic compounds, flavonoids, and glycoalkaloids in harvested red, yellow, and green tomatoes, tomato leaves, and tomato stems. Currt Top Phytochem. 2019;15:43–53.
19.
go back to reference Choi S-H, Lee S-H, Kim H-J, Lee I-S, Kozukue N, Levin CE, et al. Changes in free amino acid, phenolic, chlorophyll, carotenoid, and glycoalkaloid contents in tomatoes during 11 stages of growth and inhibition of cervical and lung human cancer cells by green tomato extracts. J Agric Food Chem. 2010;58(13):7547–56. https://doi.org/10.1021/jf100162j.CrossRefPubMed Choi S-H, Lee S-H, Kim H-J, Lee I-S, Kozukue N, Levin CE, et al. Changes in free amino acid, phenolic, chlorophyll, carotenoid, and glycoalkaloid contents in tomatoes during 11 stages of growth and inhibition of cervical and lung human cancer cells by green tomato extracts. J Agric Food Chem. 2010;58(13):7547–56. https://​doi.​org/​10.​1021/​jf100162j.CrossRefPubMed
20.
go back to reference Valadkhani Z, Hassan N, Z A, Mostafavi E. Protective role of lactobacillus acidophilus against vaginal infection with trichomonas vaginalis. Mediterr J Biosci. 2016;1:50–4. Valadkhani Z, Hassan N, Z A, Mostafavi E. Protective role of lactobacillus acidophilus against vaginal infection with trichomonas vaginalis. Mediterr J Biosci. 2016;1:50–4.
21.
go back to reference Phukan N, Brooks AES, Simoes-Barbosa A. A cell surface aggregation-promoting factor from lactobacillus gasseri contributes to inhibition of trichomonas vaginalis adhesion to human vaginal ectocervical cells. Infect Immun. 2018;86(8):e00907–17.CrossRefPubMedPubMedCentral Phukan N, Brooks AES, Simoes-Barbosa A. A cell surface aggregation-promoting factor from lactobacillus gasseri contributes to inhibition of trichomonas vaginalis adhesion to human vaginal ectocervical cells. Infect Immun. 2018;86(8):e00907–17.CrossRefPubMedPubMedCentral
27.
go back to reference Abdali K, Jahed L, Amooee S, Zarshenas M, Tabatabaee H, Bekhradi R. Comparison of the effect of vaginal Zataria multiflora cream and oral metronidazole pill on results of treatments for vaginal infections including trichomoniasis and bacterial vaginosis in women of reproductive age. BioMed Res Int. 2015;2015:No. 683640. Abdali K, Jahed L, Amooee S, Zarshenas M, Tabatabaee H, Bekhradi R. Comparison of the effect of vaginal Zataria multiflora cream and oral metronidazole pill on results of treatments for vaginal infections including trichomoniasis and bacterial vaginosis in women of reproductive age. BioMed Res Int. 2015;2015:No. 683640.
39.
go back to reference Katalin S, Beata M-K. Chlorophylls and their derivatives used in food industry and medicine. Mini Rev Med Chem. 2017;17(13):1194–222. Katalin S, Beata M-K. Chlorophylls and their derivatives used in food industry and medicine. Mini Rev Med Chem. 2017;17(13):1194–222.
Metadata
Title
Antimicrobial properties of tomato leaves, stems, and fruit and their relationship to chemical composition
Authors
Christina C. Tam
Kevin Nguyen
Daniel Nguyen
Sabrina Hamada
Okhun Kwon
Irene Kuang
Steven Gong
Sydney Escobar
Max Liu
Jihwan Kim
Tiffany Hou
Justin Tam
Luisa W. Cheng
Jong H. Kim
Kirkwood M. Land
Mendel Friedman
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2021
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-021-03391-2

Other articles of this Issue 1/2021

BMC Complementary Medicine and Therapies 1/2021 Go to the issue