Skip to main content
Top
Published in: Radiation Oncology 1/2014

Open Access 01-12-2014 | Research

Treatment fractionation for stereotactic radiotherapy of lung tumours: a modelling study of the influence of chronic and acute hypoxia on tumour control probability

Authors: Emely Lindblom, Laura Antonovic, Alexandru Dasu, Ingmar Lax, Peter Wersäll, Iuliana Toma-Dasu

Published in: Radiation Oncology | Issue 1/2014

Login to get access

Abstract

Background

Stereotactic body radiotherapy (SBRT) for non-small-cell lung cancer (NSCLC) has led to promising local control and overall survival for fractionation schemes with increasingly high fractional doses. A point has however been reached where the number of fractions used might be too low to allow efficient local inter-fraction reoxygenation of the hypoxic cells residing in the tumour. It was therefore the purpose of this study to investigate the impact of hypoxia and extreme hypofractionation on the tumour control probability (TCP) from SBRT.

Methods

A three-dimensional model of tumour oxygenation able to simulate oxygenation changes on the microscale was used. The TCP was determined for clinically relevant SBRT fractionation schedules of 1, 3 and 5 fractions assuming either static tumour oxygenation or that the oxygenation changes locally between fractions due to fast reoxygenation of acute hypoxia without an overall reduction in chronic hypoxia.

Results

For the schedules applying three or five fractions the doses required to achieve satisfying levels of TCP were considerably lower when local oxygenation changes were assumed compared to the case of static oxygenation; a decrease in D50 of 17.7 Gy was observed for a five-fractions schedule applied to a 20% hypoxic tumour when fast reoxygenation was modelled. Assuming local oxygenation changes, the total doses required for a tumor control probability of 50% were of similar size for one, three and five fractions.

Conclusions

Although attractive from a practical point of view, extreme hypofractionation using just one single fraction may result in impaired local control of hypoxic tumours, as it eliminates the possibility for any kind of reoxygenation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lax I, Blomgren H, Näslund I, Svanström R: Stereotactic radiotherapy ofmalignancies in the abdomen. Acta Oncol 1994, 33: 677-683. 10.3109/02841869409121782CrossRefPubMed Lax I, Blomgren H, Näslund I, Svanström R: Stereotactic radiotherapy ofmalignancies in the abdomen. Acta Oncol 1994, 33: 677-683. 10.3109/02841869409121782CrossRefPubMed
2.
go back to reference Blomgren H, Lax I, Näslund I, Svanström R: Stereotactic high dose fraction radiation therapy of extracranial tumours using an accelerator. Acta Oncol 1995, 34: 861-870. 10.3109/02841869509127197CrossRefPubMed Blomgren H, Lax I, Näslund I, Svanström R: Stereotactic high dose fraction radiation therapy of extracranial tumours using an accelerator. Acta Oncol 1995, 34: 861-870. 10.3109/02841869509127197CrossRefPubMed
3.
go back to reference Hof H, Muenter M, Oetzel D, Hoess A, Debus J, Herfarth K: Stereotactic single-dose radiotherapy (radiosurgery) of early-stage nonsmall-cell lung cancer (NSCLC). Cancer 2007, 110: 148-155. 10.1002/cncr.22763CrossRefPubMed Hof H, Muenter M, Oetzel D, Hoess A, Debus J, Herfarth K: Stereotactic single-dose radiotherapy (radiosurgery) of early-stage nonsmall-cell lung cancer (NSCLC). Cancer 2007, 110: 148-155. 10.1002/cncr.22763CrossRefPubMed
4.
go back to reference Fritz P, Kraus HJ, Blaschke T, Mühlnickel W, Strauch K, Engel-Riedel W, Chemaissani A, Stoelben E: Stereotactic, high single-dose irradiation of stage I non-small cell lung cancer (NSCLC) using four-dimensional CT scans for treatment planning. Lung Cancer 2008, 60: 193-199. 10.1016/j.lungcan.2007.10.005CrossRefPubMed Fritz P, Kraus HJ, Blaschke T, Mühlnickel W, Strauch K, Engel-Riedel W, Chemaissani A, Stoelben E: Stereotactic, high single-dose irradiation of stage I non-small cell lung cancer (NSCLC) using four-dimensional CT scans for treatment planning. Lung Cancer 2008, 60: 193-199. 10.1016/j.lungcan.2007.10.005CrossRefPubMed
5.
go back to reference Zimmermann FB, Geinitz H, Schill S, Grosu A, Schratzenstaller U, Molls M, Jeremic B: Stereotactic hypofractionated radiation therapy for stage I non-small cell lung cancer. Lung Cancer 2005, 48: 107-114. 10.1016/j.lungcan.2004.10.015CrossRefPubMed Zimmermann FB, Geinitz H, Schill S, Grosu A, Schratzenstaller U, Molls M, Jeremic B: Stereotactic hypofractionated radiation therapy for stage I non-small cell lung cancer. Lung Cancer 2005, 48: 107-114. 10.1016/j.lungcan.2004.10.015CrossRefPubMed
6.
go back to reference Baumann P, Nyman J, Hoyer M, Wennberg B, Gagliardi G, Lax I, Drugge N, Ekberg L, Friesland S, Johansson KA, Lund JÅ, Morhed E, Nilsson K, Levin N, Paludan M, Sederholm C, Traberg A, Wittgren L, Lewensohn R: Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. J Clin Oncol 2009, 27: 3290-3296. 10.1200/JCO.2008.21.5681CrossRefPubMed Baumann P, Nyman J, Hoyer M, Wennberg B, Gagliardi G, Lax I, Drugge N, Ekberg L, Friesland S, Johansson KA, Lund JÅ, Morhed E, Nilsson K, Levin N, Paludan M, Sederholm C, Traberg A, Wittgren L, Lewensohn R: Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. J Clin Oncol 2009, 27: 3290-3296. 10.1200/JCO.2008.21.5681CrossRefPubMed
7.
go back to reference Olsen JR, Robinson CG, El Naqa I, Creach KM, Drzymala RE, Bloch C, Parikh PJ, Bradley JD: Dose–response for stereotactic body radiotherapy in early-stage non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2011, 81: e299-e303. 10.1016/j.ijrobp.2011.01.038CrossRefPubMed Olsen JR, Robinson CG, El Naqa I, Creach KM, Drzymala RE, Bloch C, Parikh PJ, Bradley JD: Dose–response for stereotactic body radiotherapy in early-stage non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2011, 81: e299-e303. 10.1016/j.ijrobp.2011.01.038CrossRefPubMed
8.
go back to reference Haasbeek CJA, Lagerwaard FJ, Antonisse ME, Slotman BJ, Senan S: Stage I nonsmall cell lung cancer in patients aged ≥ 75 years: outcomes after stereotactic radiotherapy. Cancer 2010, 116: 406-414. 10.1002/cncr.24759CrossRefPubMed Haasbeek CJA, Lagerwaard FJ, Antonisse ME, Slotman BJ, Senan S: Stage I nonsmall cell lung cancer in patients aged ≥ 75 years: outcomes after stereotactic radiotherapy. Cancer 2010, 116: 406-414. 10.1002/cncr.24759CrossRefPubMed
9.
go back to reference Takeda A, Sanuki N, Kunieda E, Ohashi T, Oku Y, Takeda T, Shigematsu N, Kubo A: Stereotactic body radiotherapy for primary lung cancer at a dose of 50 Gy total in five fractions to the periphery of the planning target volume calculated using a superposition algorithm. Int J Radiat Oncol Biol Phys 2009, 73: 442-448. 10.1016/j.ijrobp.2008.04.043CrossRefPubMed Takeda A, Sanuki N, Kunieda E, Ohashi T, Oku Y, Takeda T, Shigematsu N, Kubo A: Stereotactic body radiotherapy for primary lung cancer at a dose of 50 Gy total in five fractions to the periphery of the planning target volume calculated using a superposition algorithm. Int J Radiat Oncol Biol Phys 2009, 73: 442-448. 10.1016/j.ijrobp.2008.04.043CrossRefPubMed
10.
go back to reference Song CW, Park H, Griffin RJ, Levitt SH: Radiobiology of stereotactic radiosurgery and stereotactic body radiation therapy. In Technical Basis of Radiation Therapy – Practical Clinical Applications. 5th edition. Edited by: Levitt SH, Purdy JA, Perez CA, Poortmans P. Berlin, Heidelberg: Springer-Verlag; 2012:51-61. Song CW, Park H, Griffin RJ, Levitt SH: Radiobiology of stereotactic radiosurgery and stereotactic body radiation therapy. In Technical Basis of Radiation Therapy – Practical Clinical Applications. 5th edition. Edited by: Levitt SH, Purdy JA, Perez CA, Poortmans P. Berlin, Heidelberg: Springer-Verlag; 2012:51-61.
11.
go back to reference Withers HR, Taylor JMG, Maciejewski B: The hazard of accelerated tumour clonogen repopulation during radiotherapy. Acta Oncol 1988, 27: 131-146. 10.3109/02841868809090333CrossRefPubMed Withers HR, Taylor JMG, Maciejewski B: The hazard of accelerated tumour clonogen repopulation during radiotherapy. Acta Oncol 1988, 27: 131-146. 10.3109/02841868809090333CrossRefPubMed
12.
go back to reference Paganetti H: Changes in tumour cell response due to prolonged dose delivery times in fractionated radiation therapy. Int J Radiat Oncol Biol Phys 2005, 63: 892-900. 10.1016/j.ijrobp.2005.07.953CrossRefPubMed Paganetti H: Changes in tumour cell response due to prolonged dose delivery times in fractionated radiation therapy. Int J Radiat Oncol Biol Phys 2005, 63: 892-900. 10.1016/j.ijrobp.2005.07.953CrossRefPubMed
13.
go back to reference Hall EJ, Giaccia AJ: Radiobiology for the Radiologist. 6th edition. Philadelphia: Lippincott/Williams & Wilkins; 2006:85–89-378–379. Hall EJ, Giaccia AJ: Radiobiology for the Radiologist. 6th edition. Philadelphia: Lippincott/Williams & Wilkins; 2006:85–89-378–379.
14.
go back to reference Kallman RF: The phenomenon of reoxygenation and its implications for fractionated radiotherapy. Radiology 1972, 105: 135-142. 10.1148/105.1.135CrossRefPubMed Kallman RF: The phenomenon of reoxygenation and its implications for fractionated radiotherapy. Radiology 1972, 105: 135-142. 10.1148/105.1.135CrossRefPubMed
15.
go back to reference Brown JM: Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxyenation. Br J Radiol 1979, 52: 650-656. 10.1259/0007-1285-52-620-650CrossRefPubMed Brown JM: Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxyenation. Br J Radiol 1979, 52: 650-656. 10.1259/0007-1285-52-620-650CrossRefPubMed
16.
go back to reference Ljungkvist AS, Bussink J, Kaanders JH, Wiedenmann NE, Vlasman R, van der Kogel AJ: Dynamics of hypoxia, proliferation and apoptosis after irradiation in a murine tumour model. Rad Res 2006, 165: 326-336. 10.1667/RR3515.1CrossRef Ljungkvist AS, Bussink J, Kaanders JH, Wiedenmann NE, Vlasman R, van der Kogel AJ: Dynamics of hypoxia, proliferation and apoptosis after irradiation in a murine tumour model. Rad Res 2006, 165: 326-336. 10.1667/RR3515.1CrossRef
17.
go back to reference Ruggieri R, Naccarato S, Nahum AE: Severe hypofractionation: non-homogeneous tumour dose delivery can counteract tumour hypoxia. Acta Oncol 2010, 49: 1304-1314. 10.3109/0284186X.2010.486796CrossRefPubMed Ruggieri R, Naccarato S, Nahum AE: Severe hypofractionation: non-homogeneous tumour dose delivery can counteract tumour hypoxia. Acta Oncol 2010, 49: 1304-1314. 10.3109/0284186X.2010.486796CrossRefPubMed
18.
go back to reference Carlson DJ, Keall PJ, Loo BW Jr, Chen ZJ, Brown JM: Hypofractionation results in reduced tumour cell kill compared to conventional fractionation for tumours with regions of hypoxia. Int J Radiat Oncol Biol Phys 2011, 79: 1188-1195. 10.1016/j.ijrobp.2010.10.007PubMedCentralCrossRefPubMed Carlson DJ, Keall PJ, Loo BW Jr, Chen ZJ, Brown JM: Hypofractionation results in reduced tumour cell kill compared to conventional fractionation for tumours with regions of hypoxia. Int J Radiat Oncol Biol Phys 2011, 79: 1188-1195. 10.1016/j.ijrobp.2010.10.007PubMedCentralCrossRefPubMed
19.
go back to reference Dasu A, Toma-Dasu I, Karlsson M: Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia. Phys Med Biol 2003, 48: 2829-2842. 10.1088/0031-9155/48/17/307CrossRefPubMed Dasu A, Toma-Dasu I, Karlsson M: Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia. Phys Med Biol 2003, 48: 2829-2842. 10.1088/0031-9155/48/17/307CrossRefPubMed
20.
go back to reference Dasu A, Toma-Dasu I, Karlsson M: The effects of hypoxia on the theoretical modelling of tumour control probability. Acta Oncol 2005, 44: 563-571. 10.1080/02841860500244435CrossRefPubMed Dasu A, Toma-Dasu I, Karlsson M: The effects of hypoxia on the theoretical modelling of tumour control probability. Acta Oncol 2005, 44: 563-571. 10.1080/02841860500244435CrossRefPubMed
21.
go back to reference Toma-Dasu I, Dasu A, Brahme A: Dose prescription and optimisation based on tumour hypoxia. Acta Oncol 2009, 48: 1181-1192. 10.3109/02841860903188643CrossRefPubMed Toma-Dasu I, Dasu A, Brahme A: Dose prescription and optimisation based on tumour hypoxia. Acta Oncol 2009, 48: 1181-1192. 10.3109/02841860903188643CrossRefPubMed
22.
go back to reference Barendsen GW: Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 1982, 8: 1981-1997. 10.1016/0360-3016(82)90459-XCrossRefPubMed Barendsen GW: Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 1982, 8: 1981-1997. 10.1016/0360-3016(82)90459-XCrossRefPubMed
23.
go back to reference Park C, Papiez L, Zhang S, Story M, Timmerman RD: Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys 2008, 70: 847-852. 10.1016/j.ijrobp.2007.10.059CrossRefPubMed Park C, Papiez L, Zhang S, Story M, Timmerman RD: Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys 2008, 70: 847-852. 10.1016/j.ijrobp.2007.10.059CrossRefPubMed
24.
go back to reference Kirkpatrick JP, Brenner DJ, Orton CG: Point/Counterpoint. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Med Phys 2009, 36: 3381-3384. 10.1118/1.3157095CrossRefPubMed Kirkpatrick JP, Brenner DJ, Orton CG: Point/Counterpoint. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Med Phys 2009, 36: 3381-3384. 10.1118/1.3157095CrossRefPubMed
25.
go back to reference Alper T: Cellular radiobiology. Cambridge, UK: Cambridge University Press; 1979. Alper T: Cellular radiobiology. Cambridge, UK: Cambridge University Press; 1979.
26.
27.
go back to reference Konerding MA, Malkusch W, Klapthor B: Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br J Cancer 1999, 80: 724-732. 10.1038/sj.bjc.6690416PubMedCentralCrossRefPubMed Konerding MA, Malkusch W, Klapthor B: Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br J Cancer 1999, 80: 724-732. 10.1038/sj.bjc.6690416PubMedCentralCrossRefPubMed
28.
go back to reference Antonovic L, Lindblom E, Dasu A, Bassler N, Furusawa Y, Toma-Dasu I: Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: The influence of local oxygenation changes. J Radiat Res 2014. Epub ahead of print, doi:10.1093/jrr/rru020 Antonovic L, Lindblom E, Dasu A, Bassler N, Furusawa Y, Toma-Dasu I: Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: The influence of local oxygenation changes. J Radiat Res 2014. Epub ahead of print, doi:10.1093/jrr/rru020
29.
go back to reference Dasu A, Toma-Dasu I: Prostate alpha/beta revisited – an analysis of clinical results from 14 168 patients. Acta Oncol 2012, 51: 963-974. 10.3109/0284186X.2012.719635CrossRefPubMed Dasu A, Toma-Dasu I: Prostate alpha/beta revisited – an analysis of clinical results from 14 168 patients. Acta Oncol 2012, 51: 963-974. 10.3109/0284186X.2012.719635CrossRefPubMed
30.
go back to reference Dale RG: The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol 1985, 58: 515-528. 10.1259/0007-1285-58-690-515CrossRefPubMed Dale RG: The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol 1985, 58: 515-528. 10.1259/0007-1285-58-690-515CrossRefPubMed
31.
go back to reference Wennberg B, Lax I: The impact of fractionation in SBRT: analysis with the linear quadratic model and the universal survival curve model. Acta Oncol 2013, 52: 902-909. 10.3109/0284186X.2012.728292CrossRefPubMed Wennberg B, Lax I: The impact of fractionation in SBRT: analysis with the linear quadratic model and the universal survival curve model. Acta Oncol 2013, 52: 902-909. 10.3109/0284186X.2012.728292CrossRefPubMed
32.
go back to reference Overgaard J: Hypoxic radiosensitization: adored and ignored. J Clin Oncol 2007, 25: 4066-4074. 10.1200/JCO.2007.12.7878CrossRefPubMed Overgaard J: Hypoxic radiosensitization: adored and ignored. J Clin Oncol 2007, 25: 4066-4074. 10.1200/JCO.2007.12.7878CrossRefPubMed
33.
go back to reference Rasey JS, Koh WJ, Evans ML, Peterson LM, Lewellen TK, Graham MM, Krohn KA: Quantifying regional hypoxia in human tumors with positron emission tomography of [18 F]Fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 1996, 36: 417-428. 10.1016/S0360-3016(96)00325-2CrossRefPubMed Rasey JS, Koh WJ, Evans ML, Peterson LM, Lewellen TK, Graham MM, Krohn KA: Quantifying regional hypoxia in human tumors with positron emission tomography of [18 F]Fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 1996, 36: 417-428. 10.1016/S0360-3016(96)00325-2CrossRefPubMed
34.
go back to reference Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW: Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Rad Res 2012, 177: 311-327. 10.1667/RR2773.1CrossRef Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW: Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Rad Res 2012, 177: 311-327. 10.1667/RR2773.1CrossRef
35.
go back to reference Yang J, Fowler JF, Lamond JP, Lanciano R, Feng J, Brady LW: Red shell: defining a high-risk zone of normal tissue damage in stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 2010, 77: 903-909. 10.1016/j.ijrobp.2009.12.069CrossRefPubMed Yang J, Fowler JF, Lamond JP, Lanciano R, Feng J, Brady LW: Red shell: defining a high-risk zone of normal tissue damage in stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 2010, 77: 903-909. 10.1016/j.ijrobp.2009.12.069CrossRefPubMed
36.
go back to reference Tomé WA: Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy: in regard to Parks et al. (Int J Radiat Oncol Biol Phys 2008;72:1620–1621). Int J Radiat Oncol Biol Phys 2009, 73: 1286.CrossRefPubMed Tomé WA: Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy: in regard to Parks et al. (Int J Radiat Oncol Biol Phys 2008;72:1620–1621). Int J Radiat Oncol Biol Phys 2009, 73: 1286.CrossRefPubMed
Metadata
Title
Treatment fractionation for stereotactic radiotherapy of lung tumours: a modelling study of the influence of chronic and acute hypoxia on tumour control probability
Authors
Emely Lindblom
Laura Antonovic
Alexandru Dasu
Ingmar Lax
Peter Wersäll
Iuliana Toma-Dasu
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2014
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-9-149

Other articles of this Issue 1/2014

Radiation Oncology 1/2014 Go to the issue