Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2014

Open Access 01-12-2014 | Research

Traumatic brain injury causes selective, CD74-dependent peripheral lymphocyte activation that exacerbates neurodegeneration

Authors: Richard P Tobin, Sanjib Mukherjee, Jessica M Kain, Susannah K Rogers, Stephanie K Henderson, Heather L Motal, M Karen Newell Rogers, Lee A Shapiro

Published in: Acta Neuropathologica Communications | Issue 1/2014

Login to get access

Abstract

Introduction

Traumatic brain injury (TBI), a significant cause of death and disability, causes, as in any injury, an acute, innate immune response. A key component in the transition between innate and adaptive immunity is the processing and presentation of antigen by professional antigen presenting cells (APCs). Whether an adaptive immune response to brain injury is beneficial or detrimental is not known. Current efforts to understand the contribution of the immune system after TBI have focused on neuroinflammation and brain-infiltrating immune cells. Here, we characterize and target TBI-induced expansion of peripheral immune cells that may act as potential APCs. Because MHC Class II-associated invariant peptide (CLIP) is important for antigen processing and presentation, we engineered a competitive antagonist (CAP) for CLIP, and tested the hypothesis that peptide competition could reverse or prevent neurodegeneration after TBI.

Results

We show that after fluid percussion injury (FPI), peripheral splenic lymphocytes, including CD4+ and CD8+ T cells, regulatory T cells (Tregs), and γδ T cells, are increased in number within 24 hours after FPI. These increases were reversed by CAP treatment and this antagonism of CLIP also reduced neuroinflammation and neurodegeneration after TBI. Using a mouse deficient for the precursor of CLIP, CD74, we observed decreased peripheral lymphocyte activation, decreased neurodegeneration, and a significantly smaller lesion size following TBI.

Conclusion

Taken together, the data support the hypothesis that neurodegeneration following TBI is dependent upon antigen processing and presentation that requires CD74.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bazarian JJ, McClung J, Shah MN, Cheng YT, Flesher W, Kraus J: Mild traumatic brain injury in the United States, 1998-2000. Brain Inj 2005, 19(2):85–91. 10.1080/02699050410001720158CrossRefPubMed Bazarian JJ, McClung J, Shah MN, Cheng YT, Flesher W, Kraus J: Mild traumatic brain injury in the United States, 1998-2000. Brain Inj 2005, 19(2):85–91. 10.1080/02699050410001720158CrossRefPubMed
2.
go back to reference Corrigan JD, Selassie AW, Orman JA: The epidemiology of traumatic brain injury. J Head Trauma Rehabil 2010, 25(2):72–80. doi:10.1097/HTR.0b013e3181ccc8b4 10.1097/HTR.0b013e3181ccc8b4CrossRefPubMed Corrigan JD, Selassie AW, Orman JA: The epidemiology of traumatic brain injury. J Head Trauma Rehabil 2010, 25(2):72–80. doi:10.1097/HTR.0b013e3181ccc8b4 10.1097/HTR.0b013e3181ccc8b4CrossRefPubMed
3.
go back to reference Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC: The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 2007, 22(5):341–353.PubMed Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC: The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 2007, 22(5):341–353.PubMed
4.
go back to reference Beschorner R, Schluesener HJ, Gozalan F, Meyermann R, Schwab JM: Infiltrating CD14+ monocytes and expression of CD14 by activated parenchymal microglia/macrophages contribute to the pool of CD14+ cells in ischemic brain lesions. J Neuroimmunol 2002, 126(1-2):107–115. 10.1016/S0165-5728(02)00046-2CrossRefPubMed Beschorner R, Schluesener HJ, Gozalan F, Meyermann R, Schwab JM: Infiltrating CD14+ monocytes and expression of CD14 by activated parenchymal microglia/macrophages contribute to the pool of CD14+ cells in ischemic brain lesions. J Neuroimmunol 2002, 126(1-2):107–115. 10.1016/S0165-5728(02)00046-2CrossRefPubMed
5.
go back to reference Das M, Mohapatra S, Mohapatra SS: New perspectives on central and peripheral immune responses to acute traumatic brain injury. J Neuroinflammation 2012, 9: 236. doi:10.1186/1742–2094–9-236 10.1186/1742-2094-9-236CrossRefPubMedPubMedCentral Das M, Mohapatra S, Mohapatra SS: New perspectives on central and peripheral immune responses to acute traumatic brain injury. J Neuroinflammation 2012, 9: 236. doi:10.1186/1742–2094–9-236 10.1186/1742-2094-9-236CrossRefPubMedPubMedCentral
6.
go back to reference Finnie JW: Neuroinflammation: beneficial and detrimental effects after traumatic brain injury. Inflammopharmacology 2013, 21(4):309–320. doi:10.1007/s10787–012–0164–2 10.1007/s10787-012-0164-2CrossRefPubMed Finnie JW: Neuroinflammation: beneficial and detrimental effects after traumatic brain injury. Inflammopharmacology 2013, 21(4):309–320. doi:10.1007/s10787–012–0164–2 10.1007/s10787-012-0164-2CrossRefPubMed
7.
go back to reference Clausen F, Lorant T, Lewen A, Hillered L: T lymphocyte trafficking: a novel target for neuroprotection in traumatic brain injury. J Neurotrauma 2007, 24(8):1295–1307. doi:10.1089/neu.2006.0258 10.1089/neu.2006.0258CrossRefPubMed Clausen F, Lorant T, Lewen A, Hillered L: T lymphocyte trafficking: a novel target for neuroprotection in traumatic brain injury. J Neurotrauma 2007, 24(8):1295–1307. doi:10.1089/neu.2006.0258 10.1089/neu.2006.0258CrossRefPubMed
8.
go back to reference Medawar PB: Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 1948, 29(1):58–69.PubMedPubMedCentral Medawar PB: Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 1948, 29(1):58–69.PubMedPubMedCentral
9.
go back to reference Butterfield TA, Best TM, Merrick MA: The dual roles of neutrophils and macrophages in inflammation: a critical balance between tissue damage and repair. J Athl Train 2006, 41(4):457–465.PubMedPubMedCentral Butterfield TA, Best TM, Merrick MA: The dual roles of neutrophils and macrophages in inflammation: a critical balance between tissue damage and repair. J Athl Train 2006, 41(4):457–465.PubMedPubMedCentral
10.
go back to reference Segel GB, Halterman MW, Lichtman MA: The paradox of the neutrophil's role in tissue injury. J Leukoc Biol 2011, 89(3):359–372. doi:10.1189/jlb.0910538 10.1189/jlb.0910538CrossRefPubMed Segel GB, Halterman MW, Lichtman MA: The paradox of the neutrophil's role in tissue injury. J Leukoc Biol 2011, 89(3):359–372. doi:10.1189/jlb.0910538 10.1189/jlb.0910538CrossRefPubMed
11.
go back to reference Hernandez-Ontiveros DG, Tajiri N, Acosta S, Giunta B, Tan J, Borlongan CV: Microglia activation as a biomarker for traumatic brain injury. Front Neurol 2013, 4: 30. doi:10.3389/fneur.2013.00030 10.3389/fneur.2013.00030CrossRefPubMedPubMedCentral Hernandez-Ontiveros DG, Tajiri N, Acosta S, Giunta B, Tan J, Borlongan CV: Microglia activation as a biomarker for traumatic brain injury. Front Neurol 2013, 4: 30. doi:10.3389/fneur.2013.00030 10.3389/fneur.2013.00030CrossRefPubMedPubMedCentral
12.
go back to reference Blum JS, Wearsch PA, Cresswell P: Pathways of antigen processing. Annu Rev Immunol 2013, 31: 443–473. doi:10.1146/annurev-immunol-032712–095910 10.1146/annurev-immunol-032712-095910CrossRefPubMedPubMedCentral Blum JS, Wearsch PA, Cresswell P: Pathways of antigen processing. Annu Rev Immunol 2013, 31: 443–473. doi:10.1146/annurev-immunol-032712–095910 10.1146/annurev-immunol-032712-095910CrossRefPubMedPubMedCentral
13.
go back to reference Allen PM, Babbitt BP, Unanue ER: T-cell recognition of lysozyme: the biochemical basis of presentation. Immunol Rev 1987, 98: 171–187. 10.1111/j.1600-065X.1987.tb00524.xCrossRefPubMed Allen PM, Babbitt BP, Unanue ER: T-cell recognition of lysozyme: the biochemical basis of presentation. Immunol Rev 1987, 98: 171–187. 10.1111/j.1600-065X.1987.tb00524.xCrossRefPubMed
14.
go back to reference Barker CF, Billingham RE: Immunologically privileged sites. Adv Immunol 1977, 25: 1–54. 10.1016/S0065-2776(08)60930-XCrossRefPubMed Barker CF, Billingham RE: Immunologically privileged sites. Adv Immunol 1977, 25: 1–54. 10.1016/S0065-2776(08)60930-XCrossRefPubMed
15.
go back to reference Slavin AJ, Soos JM, Stuve O, Patarroyo JC, Weiner HL, Fontana A, Bikoff EK, Zamvil SS: Requirement for endocytic antigen processing and influence of invariant chain and H-2-M deficiencies in CNS autoimmunity. J Clin Invest 2001, 108(8):1133–1139. doi:10.1172/JCI13360 10.1172/JCI13360CrossRefPubMedPubMedCentral Slavin AJ, Soos JM, Stuve O, Patarroyo JC, Weiner HL, Fontana A, Bikoff EK, Zamvil SS: Requirement for endocytic antigen processing and influence of invariant chain and H-2-M deficiencies in CNS autoimmunity. J Clin Invest 2001, 108(8):1133–1139. doi:10.1172/JCI13360 10.1172/JCI13360CrossRefPubMedPubMedCentral
16.
go back to reference Ling C, Sandor M, Suresh M, Fabry Z: Traumatic injury and the presence of antigen differentially contribute to T-cell recruitment in the CNS. J Neurosci 2006, 26(3):731–741. doi:10.1523/JNEUROSCI.3502–05.2006 10.1523/JNEUROSCI.3502-05.2006CrossRefPubMed Ling C, Sandor M, Suresh M, Fabry Z: Traumatic injury and the presence of antigen differentially contribute to T-cell recruitment in the CNS. J Neurosci 2006, 26(3):731–741. doi:10.1523/JNEUROSCI.3502–05.2006 10.1523/JNEUROSCI.3502-05.2006CrossRefPubMed
17.
go back to reference Schori H, Lantner F, Shachar I, Schwartz M: Severe immunodeficiency has opposite effects on neuronal survival in glutamate-susceptible and -resistant mice: adverse effect of B cells. J Immunol 2002, 169(6):2861–2865. 10.4049/jimmunol.169.6.2861CrossRefPubMed Schori H, Lantner F, Shachar I, Schwartz M: Severe immunodeficiency has opposite effects on neuronal survival in glutamate-susceptible and -resistant mice: adverse effect of B cells. J Immunol 2002, 169(6):2861–2865. 10.4049/jimmunol.169.6.2861CrossRefPubMed
18.
go back to reference Schori H, Shechter R, Shachar I, Schwartz M: Genetic manipulation of CD74 in mouse strains of different backgrounds can result in opposite responses to central nervous system injury. J Immunol 2007, 178(1):163–171. 10.4049/jimmunol.178.1.163CrossRefPubMed Schori H, Shechter R, Shachar I, Schwartz M: Genetic manipulation of CD74 in mouse strains of different backgrounds can result in opposite responses to central nervous system injury. J Immunol 2007, 178(1):163–171. 10.4049/jimmunol.178.1.163CrossRefPubMed
19.
go back to reference Schori H, Yoles E, Wheeler LA, Raveh T, Kimchi A, Schwartz M: Immune-related mechanisms participating in resistance and susceptibility to glutamate toxicity. Eur J Neurosci 2002, 16(4):557–564. 10.1046/j.1460-9568.2002.02134.xCrossRefPubMed Schori H, Yoles E, Wheeler LA, Raveh T, Kimchi A, Schwartz M: Immune-related mechanisms participating in resistance and susceptibility to glutamate toxicity. Eur J Neurosci 2002, 16(4):557–564. 10.1046/j.1460-9568.2002.02134.xCrossRefPubMed
20.
go back to reference Babbitt BP, Allen PM, Matsueda G, Haber E, Unanue ER: Binding of immunogenic peptides to Ia histocompatibility molecules. Nature 1985, 317(6035):359–361. 10.1038/317359a0CrossRefPubMed Babbitt BP, Allen PM, Matsueda G, Haber E, Unanue ER: Binding of immunogenic peptides to Ia histocompatibility molecules. Nature 1985, 317(6035):359–361. 10.1038/317359a0CrossRefPubMed
21.
go back to reference Cheng L, Cui Y, Shao H, Han G, Zhu L, Huang Y, O'Brien RL, Born WK, Kaplan HJ, Sun D: Mouse gammadelta T cells are capable of expressing MHC class II molecules, and of functioning as antigen-presenting cells. J Neuroimmunol 2008, 203(1):3–11. doi:10.1016/j.jneuroim.2008.06.007 10.1016/j.jneuroim.2008.06.007CrossRefPubMedPubMedCentral Cheng L, Cui Y, Shao H, Han G, Zhu L, Huang Y, O'Brien RL, Born WK, Kaplan HJ, Sun D: Mouse gammadelta T cells are capable of expressing MHC class II molecules, and of functioning as antigen-presenting cells. J Neuroimmunol 2008, 203(1):3–11. doi:10.1016/j.jneuroim.2008.06.007 10.1016/j.jneuroim.2008.06.007CrossRefPubMedPubMedCentral
22.
go back to reference Lanzavecchia A: Antigen uptake and accumulation in antigen-specific B cells. Immunol Rev 1987, 99: 39–51. 10.1111/j.1600-065X.1987.tb01171.xCrossRefPubMed Lanzavecchia A: Antigen uptake and accumulation in antigen-specific B cells. Immunol Rev 1987, 99: 39–51. 10.1111/j.1600-065X.1987.tb01171.xCrossRefPubMed
23.
go back to reference Denzin LK, Cresswell P: HLA-DM induces CLIP dissociation from MHC class II alpha beta dimers and facilitates peptide loading. Cell 1995, 82(1):155–165. 10.1016/0092-8674(95)90061-6CrossRefPubMed Denzin LK, Cresswell P: HLA-DM induces CLIP dissociation from MHC class II alpha beta dimers and facilitates peptide loading. Cell 1995, 82(1):155–165. 10.1016/0092-8674(95)90061-6CrossRefPubMed
24.
go back to reference Buus S, Sette A, Colon SM, Jenis DM, Grey HM: Isolation and characterization of antigen-Ia complexes involved in T cell recognition. Cell 1986, 47(6):1071–1077. 10.1016/0092-8674(86)90822-6CrossRefPubMed Buus S, Sette A, Colon SM, Jenis DM, Grey HM: Isolation and characterization of antigen-Ia complexes involved in T cell recognition. Cell 1986, 47(6):1071–1077. 10.1016/0092-8674(86)90822-6CrossRefPubMed
25.
go back to reference Newell MK, Tobin RP, Cabrera JH, Sorensen MB, Huckstep A, Villalobos-Menuey EM, Burnett M, McCrea E, Harvey CP, Buddiga A, Bar-Or A, Freedman MS, Nalbantoglu J, Arbour N, Zamvil SS, Antel JP: TLR-mediated B cell activation results in ectopic CLIP expression that promotes B cell-dependent inflammation. J Leukoc Biol 2010, 88(4):779–789. doi:jlb.0410237 [pii] 10.1189/jlb.0410237 10.1189/jlb.0410237CrossRefPubMedPubMedCentral Newell MK, Tobin RP, Cabrera JH, Sorensen MB, Huckstep A, Villalobos-Menuey EM, Burnett M, McCrea E, Harvey CP, Buddiga A, Bar-Or A, Freedman MS, Nalbantoglu J, Arbour N, Zamvil SS, Antel JP: TLR-mediated B cell activation results in ectopic CLIP expression that promotes B cell-dependent inflammation. J Leukoc Biol 2010, 88(4):779–789. doi:jlb.0410237 [pii] 10.1189/jlb.0410237 10.1189/jlb.0410237CrossRefPubMedPubMedCentral
26.
go back to reference Mukherjee S, Zeitouni S, Cavarsan CF, Shapiro LA: Increased seizure susceptibility in mice 30 days after fluid percussion injury. Front Neurol 2013, 4: 28. doi:10.3389/fneur.2013.00028 10.3389/fneur.2013.00028CrossRefPubMedPubMedCentral Mukherjee S, Zeitouni S, Cavarsan CF, Shapiro LA: Increased seizure susceptibility in mice 30 days after fluid percussion injury. Front Neurol 2013, 4: 28. doi:10.3389/fneur.2013.00028 10.3389/fneur.2013.00028CrossRefPubMedPubMedCentral
27.
go back to reference Davidson WF, Parish CR: A procedure for removing red cells and dead cells from lymphoid cell suspensions. J Immunol Methods 1975, 7(2-3):291–300. 10.1016/0022-1759(75)90026-5CrossRefPubMed Davidson WF, Parish CR: A procedure for removing red cells and dead cells from lymphoid cell suspensions. J Immunol Methods 1975, 7(2-3):291–300. 10.1016/0022-1759(75)90026-5CrossRefPubMed
28.
go back to reference Amini M, Nahrevanian H, Farahmand M: Pathogenicity variations of susceptibility and resistance to Leishmania major MRHO/IR/75/ER Strain in BALB/c and C57BL/6 mice. Iran J Parasitol 2008, 3(4):51–59. Amini M, Nahrevanian H, Farahmand M: Pathogenicity variations of susceptibility and resistance to Leishmania major MRHO/IR/75/ER Strain in BALB/c and C57BL/6 mice. Iran J Parasitol 2008, 3(4):51–59.
29.
go back to reference Oporto VG, Fuentes R, Borie E, Del Sol M, Orsi IA, Engelke W: Radiographical and clinical evaluation of critical size defects in rabbit calvaria filled with allograft and autograft: a pilot study. Int J Clin Exp Med 2014, 7(7):1669–1675. Oporto VG, Fuentes R, Borie E, Del Sol M, Orsi IA, Engelke W: Radiographical and clinical evaluation of critical size defects in rabbit calvaria filled with allograft and autograft: a pilot study. Int J Clin Exp Med 2014, 7(7):1669–1675.
30.
go back to reference Franklin KBJ, Paxinos G: The Mouse Brain in Stereotaxic Coordinates. Academic, San Diego; 1997. Franklin KBJ, Paxinos G: The Mouse Brain in Stereotaxic Coordinates. Academic, San Diego; 1997.
31.
go back to reference Collins RA, Werling D, Duggan SE, Bland AP, Parsons KR, Howard CJ: Gammadelta T cells present antigen to CD4+ alphabeta T cells. J Leukoc Biol 1998, 63(6):707–714.PubMed Collins RA, Werling D, Duggan SE, Bland AP, Parsons KR, Howard CJ: Gammadelta T cells present antigen to CD4+ alphabeta T cells. J Leukoc Biol 1998, 63(6):707–714.PubMed
32.
go back to reference Mukherjee S, Katki K, Arisi GM, Foresti ML, Shapiro LA: Early TBI-induced cytokine alterations are similarly detected by two distinct methods of multiplex assay. Front Mol Neurosci 2011, 4: 21. doi:10.3389/fnmol.2011.00021 10.3389/fnmol.2011.00021CrossRefPubMedPubMedCentral Mukherjee S, Katki K, Arisi GM, Foresti ML, Shapiro LA: Early TBI-induced cytokine alterations are similarly detected by two distinct methods of multiplex assay. Front Mol Neurosci 2011, 4: 21. doi:10.3389/fnmol.2011.00021 10.3389/fnmol.2011.00021CrossRefPubMedPubMedCentral
33.
go back to reference Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M: Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 1999, 5(1):49–55. doi:10.1038/4734 10.1038/4734CrossRefPubMed Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M: Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 1999, 5(1):49–55. doi:10.1038/4734 10.1038/4734CrossRefPubMed
34.
go back to reference Molnarfi N, Schulze-Topphoff U, Weber MS, Patarroyo JC, Prod'homme T, Varrin-Doyer M, Shetty A, Linington C, Slavin AJ, Hidalgo J, Jenne DE, Wekerle H, Sobel RA, Bernard CC, Shlomchik MJ, Zamvil SS: MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies. J Exp Med 2013, 210(13):2921–2937. doi:10.1084/jem.20130699 10.1084/jem.20130699CrossRefPubMedPubMedCentral Molnarfi N, Schulze-Topphoff U, Weber MS, Patarroyo JC, Prod'homme T, Varrin-Doyer M, Shetty A, Linington C, Slavin AJ, Hidalgo J, Jenne DE, Wekerle H, Sobel RA, Bernard CC, Shlomchik MJ, Zamvil SS: MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies. J Exp Med 2013, 210(13):2921–2937. doi:10.1084/jem.20130699 10.1084/jem.20130699CrossRefPubMedPubMedCentral
35.
go back to reference Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, Delohery T, Chen Y, Mitchell RA, Bucala R: MIF signal transduction initiated by binding to CD74. J Exp Med 2003, 197(11):1467–1476. doi:10.1084/jem.20030286 10.1084/jem.20030286CrossRefPubMedPubMedCentral Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, Delohery T, Chen Y, Mitchell RA, Bucala R: MIF signal transduction initiated by binding to CD74. J Exp Med 2003, 197(11):1467–1476. doi:10.1084/jem.20030286 10.1084/jem.20030286CrossRefPubMedPubMedCentral
36.
go back to reference Liao H, Bucala R, Mitchell RA: Adhesion-dependent signaling by macrophage migration inhibitory factor (MIF). J Biol Chem 2003, 278(1):76–81. doi:10.1074/jbc.M208820200 10.1074/jbc.M208820200CrossRefPubMed Liao H, Bucala R, Mitchell RA: Adhesion-dependent signaling by macrophage migration inhibitory factor (MIF). J Biol Chem 2003, 278(1):76–81. doi:10.1074/jbc.M208820200 10.1074/jbc.M208820200CrossRefPubMed
37.
go back to reference Meyer-Siegler KL, Iczkowski KA, Leng L, Bucala R, Vera PL: Inhibition of macrophage migration inhibitory factor or its receptor (CD74) attenuates growth and invasion of DU-145 prostate cancer cells. J Immunol 2006, 177(12):8730–8739. 10.4049/jimmunol.177.12.8730CrossRefPubMed Meyer-Siegler KL, Iczkowski KA, Leng L, Bucala R, Vera PL: Inhibition of macrophage migration inhibitory factor or its receptor (CD74) attenuates growth and invasion of DU-145 prostate cancer cells. J Immunol 2006, 177(12):8730–8739. 10.4049/jimmunol.177.12.8730CrossRefPubMed
38.
go back to reference Shi X, Leng L, Wang T, Wang W, Du X, Li J, McDonald C, Chen Z, Murphy JW, Lolis E, Noble P, Knudson W, Bucala R: CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity 2006, 25(4):595–606. doi:10.1016/j.immuni.2006.08.020 10.1016/j.immuni.2006.08.020CrossRefPubMedPubMedCentral Shi X, Leng L, Wang T, Wang W, Du X, Li J, McDonald C, Chen Z, Murphy JW, Lolis E, Noble P, Knudson W, Bucala R: CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity 2006, 25(4):595–606. doi:10.1016/j.immuni.2006.08.020 10.1016/j.immuni.2006.08.020CrossRefPubMedPubMedCentral
39.
go back to reference Bittner S, Ruck T, Schuhmann MK, Herrmann AM, Moha ou Maati H, Bobak N, Gobel K, Langhauser F, Stegner D, Ehling P, Borsotto M, Pape HC, Nieswandt B, Kleinschnitz C, Heurteaux C, Galla HJ, Budde T, Wiendl H, Meuth SG: Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med 2013, 19(9):1161–1165. doi:10.1038/nm.3303 10.1038/nm.3303CrossRefPubMed Bittner S, Ruck T, Schuhmann MK, Herrmann AM, Moha ou Maati H, Bobak N, Gobel K, Langhauser F, Stegner D, Ehling P, Borsotto M, Pape HC, Nieswandt B, Kleinschnitz C, Heurteaux C, Galla HJ, Budde T, Wiendl H, Meuth SG: Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med 2013, 19(9):1161–1165. doi:10.1038/nm.3303 10.1038/nm.3303CrossRefPubMed
40.
go back to reference Li P, Gan Y, Sun BL, Zhang F, Lu B, Gao Y, Liang W, Thomson AW, Chen J, Hu X: Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann Neurol 2013, 74(3):458–471. doi:10.1002/ana.23815CrossRefPubMedPubMedCentral Li P, Gan Y, Sun BL, Zhang F, Lu B, Gao Y, Liang W, Thomson AW, Chen J, Hu X: Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann Neurol 2013, 74(3):458–471. doi:10.1002/ana.23815CrossRefPubMedPubMedCentral
41.
go back to reference Li P, Mao L, Zhou G, Leak RK, Sun BL, Chen J, Hu X: Adoptive regulatory T-cell therapy preserves systemic immune homeostasis after cerebral ischemia. Stroke 2013, 44(12):3509–3515. doi:10.1161/STROKEAHA.113.002637 10.1161/STROKEAHA.113.002637CrossRefPubMedPubMedCentral Li P, Mao L, Zhou G, Leak RK, Sun BL, Chen J, Hu X: Adoptive regulatory T-cell therapy preserves systemic immune homeostasis after cerebral ischemia. Stroke 2013, 44(12):3509–3515. doi:10.1161/STROKEAHA.113.002637 10.1161/STROKEAHA.113.002637CrossRefPubMedPubMedCentral
42.
go back to reference Liesz A, Zhou W, Na SY, Hammerling GJ, Garbi N, Karcher S, Mracsko E, Backs J, Rivest S, Veltkamp R: Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke. J Neurosci 2013, 33(44):17350–17362. doi:10.1523/JNEUROSCI.4901–12.2013 10.1523/JNEUROSCI.4901-12.2013CrossRefPubMed Liesz A, Zhou W, Na SY, Hammerling GJ, Garbi N, Karcher S, Mracsko E, Backs J, Rivest S, Veltkamp R: Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke. J Neurosci 2013, 33(44):17350–17362. doi:10.1523/JNEUROSCI.4901–12.2013 10.1523/JNEUROSCI.4901-12.2013CrossRefPubMed
43.
go back to reference Zhou W, Liesz A, Bauer H, Sommer C, Lahrmann B, Valous N, Grabe N, Veltkamp R: Postischemic brain infiltration of leukocyte subpopulations differs among murine permanent and transient focal cerebral ischemia models. Brain Pathol 2013, 23(1):34–44. doi:10.1111/j.1750–3639.2012.00614.x 10.1111/j.1750-3639.2012.00614.xCrossRefPubMed Zhou W, Liesz A, Bauer H, Sommer C, Lahrmann B, Valous N, Grabe N, Veltkamp R: Postischemic brain infiltration of leukocyte subpopulations differs among murine permanent and transient focal cerebral ischemia models. Brain Pathol 2013, 23(1):34–44. doi:10.1111/j.1750–3639.2012.00614.x 10.1111/j.1750-3639.2012.00614.xCrossRefPubMed
44.
go back to reference Haribhai D, Williams JB, Jia S, Nickerson D, Schmitt EG, Edwards B, Ziegelbauer J, Yassai M, Li SH, Relland LM, Wise PM, Chen A, Zheng YQ, Simpson PM, Gorski J, Salzman NH, Hessner MJ, Chatila TA, Williams CB: A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity 2011, 35(1):109–122. doi:10.1016/j.immuni.2011.03.029 10.1016/j.immuni.2011.03.029CrossRefPubMedPubMedCentral Haribhai D, Williams JB, Jia S, Nickerson D, Schmitt EG, Edwards B, Ziegelbauer J, Yassai M, Li SH, Relland LM, Wise PM, Chen A, Zheng YQ, Simpson PM, Gorski J, Salzman NH, Hessner MJ, Chatila TA, Williams CB: A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity 2011, 35(1):109–122. doi:10.1016/j.immuni.2011.03.029 10.1016/j.immuni.2011.03.029CrossRefPubMedPubMedCentral
45.
go back to reference Weiss JM, Bilate AM, Gobert M, Ding Y, de Lafaille MA C, Parkhurst CN, Xiong H, Dolpady J, Frey AB, Ruocco MG, Yang Y, Floess S, Huehn J, Oh S, Li MO, Niec RE, Rudensky AY, Dustin ML, Littman DR, Lafaille JJ: Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med 2012, 209(10):1723–1742. S1721. doi:10.1084/jem.20120914 10.1084/jem.20120914CrossRefPubMedPubMedCentral Weiss JM, Bilate AM, Gobert M, Ding Y, de Lafaille MA C, Parkhurst CN, Xiong H, Dolpady J, Frey AB, Ruocco MG, Yang Y, Floess S, Huehn J, Oh S, Li MO, Niec RE, Rudensky AY, Dustin ML, Littman DR, Lafaille JJ: Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med 2012, 209(10):1723–1742. S1721. doi:10.1084/jem.20120914 10.1084/jem.20120914CrossRefPubMedPubMedCentral
46.
go back to reference Freedman MS, Ruijs TC, Selin LK, Antel JP: Peripheral blood gamma-delta T cells lyse fresh human brain-derived oligodendrocytes. Ann Neurol 1991, 30(6):794–800. doi:10.1002/ana.410300608 10.1002/ana.410300608CrossRefPubMed Freedman MS, Ruijs TC, Selin LK, Antel JP: Peripheral blood gamma-delta T cells lyse fresh human brain-derived oligodendrocytes. Ann Neurol 1991, 30(6):794–800. doi:10.1002/ana.410300608 10.1002/ana.410300608CrossRefPubMed
47.
go back to reference Zeine R, Pon R, Ladiwala U, Antel JP, Filion LG, Freedman MS: Mechanism of gammadelta T cell-induced human oligodendrocyte cytotoxicity: relevance to multiple sclerosis. J Neuroimmunol 1998, 87(1-2):49–61. 10.1016/S0165-5728(98)00047-2CrossRefPubMed Zeine R, Pon R, Ladiwala U, Antel JP, Filion LG, Freedman MS: Mechanism of gammadelta T cell-induced human oligodendrocyte cytotoxicity: relevance to multiple sclerosis. J Neuroimmunol 1998, 87(1-2):49–61. 10.1016/S0165-5728(98)00047-2CrossRefPubMed
48.
go back to reference Cho HJ, Sajja VS, Vandevord PJ, Lee YW: Blast induces oxidative stress, inflammation, neuronal loss and subsequent short-term memory impairment in rats. Neuroscience 2013, 253: 9–20. doi:10.1016/j.neuroscience.2013.08.037 10.1016/j.neuroscience.2013.08.037CrossRefPubMed Cho HJ, Sajja VS, Vandevord PJ, Lee YW: Blast induces oxidative stress, inflammation, neuronal loss and subsequent short-term memory impairment in rats. Neuroscience 2013, 253: 9–20. doi:10.1016/j.neuroscience.2013.08.037 10.1016/j.neuroscience.2013.08.037CrossRefPubMed
49.
go back to reference Fan L, Young PR, Barone FC, Feuerstein GZ, Smith DH, McIntosh TK: Experimental brain injury induces differential expression of tumor necrosis factor-alpha mRNA in the CNS. Brain Res Mol Brain Res 1996, 36(2):287–291. 10.1016/0169-328X(95)00274-VCrossRefPubMed Fan L, Young PR, Barone FC, Feuerstein GZ, Smith DH, McIntosh TK: Experimental brain injury induces differential expression of tumor necrosis factor-alpha mRNA in the CNS. Brain Res Mol Brain Res 1996, 36(2):287–291. 10.1016/0169-328X(95)00274-VCrossRefPubMed
50.
go back to reference Holmin S, Hojeberg B: In situ detection of intracerebral cytokine expression after human brain contusion. Neurosci Lett 2004, 369(2):108–114. doi:10.1016/j.neulet.2004.07.044 10.1016/j.neulet.2004.07.044CrossRefPubMed Holmin S, Hojeberg B: In situ detection of intracerebral cytokine expression after human brain contusion. Neurosci Lett 2004, 369(2):108–114. doi:10.1016/j.neulet.2004.07.044 10.1016/j.neulet.2004.07.044CrossRefPubMed
51.
go back to reference Morganti-Kossman MC, Lenzlinger PM, Hans V, Stahel P, Csuka E, Ammann E, Stocker R, Trentz O, Kossmann T: Production of cytokines following brain injury: beneficial and deleterious for the damaged tissue. Mol Psychiatry 1997, 2(2):133–136. 10.1038/sj.mp.4000227CrossRefPubMed Morganti-Kossman MC, Lenzlinger PM, Hans V, Stahel P, Csuka E, Ammann E, Stocker R, Trentz O, Kossmann T: Production of cytokines following brain injury: beneficial and deleterious for the damaged tissue. Mol Psychiatry 1997, 2(2):133–136. 10.1038/sj.mp.4000227CrossRefPubMed
52.
go back to reference Shohami E, Novikov M, Bass R, Yamin A, Gallily R: Closed head injury triggers early production of TNF alpha and IL-6 by brain tissue. J Cereb Blood Flow Metab 1994, 14(4):615–619. doi:10.1038/jcbfm.1994.76 10.1038/jcbfm.1994.76CrossRefPubMed Shohami E, Novikov M, Bass R, Yamin A, Gallily R: Closed head injury triggers early production of TNF alpha and IL-6 by brain tissue. J Cereb Blood Flow Metab 1994, 14(4):615–619. doi:10.1038/jcbfm.1994.76 10.1038/jcbfm.1994.76CrossRefPubMed
53.
go back to reference Cheong CU, Chang CP, Chao CM, Cheng BC, Yang CZ, Chio CC: Etanercept attenuates traumatic brain injury in rats by reducing brain TNF- alpha contents and by stimulating newly formed neurogenesis. Mediat Inflamm 2013, 2013: 620837. doi:10.1155/2013/620837 10.1155/2013/620837CrossRef Cheong CU, Chang CP, Chao CM, Cheng BC, Yang CZ, Chio CC: Etanercept attenuates traumatic brain injury in rats by reducing brain TNF- alpha contents and by stimulating newly formed neurogenesis. Mediat Inflamm 2013, 2013: 620837. doi:10.1155/2013/620837 10.1155/2013/620837CrossRef
54.
go back to reference Chio CC, Chang CH, Wang CC, Cheong CU, Chao CM, Cheng BC, Yang CZ, Chang CP: Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-alpha. BMC Neurosci 2013, 14: 33. doi:10.1186/1471–2202–14–33 10.1186/1471-2202-14-33CrossRefPubMedPubMedCentral Chio CC, Chang CH, Wang CC, Cheong CU, Chao CM, Cheng BC, Yang CZ, Chang CP: Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-alpha. BMC Neurosci 2013, 14: 33. doi:10.1186/1471–2202–14–33 10.1186/1471-2202-14-33CrossRefPubMedPubMedCentral
55.
go back to reference Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P: Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995, 270(5243):1811–1815. 10.1126/science.270.5243.1811CrossRefPubMed Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P: Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995, 270(5243):1811–1815. 10.1126/science.270.5243.1811CrossRefPubMed
56.
go back to reference Song A, Nikolcheva T, Krensky AM: Transcriptional regulation of RANTES expression in T lymphocytes. Immunol Rev 2000, 177: 236–245. 10.1034/j.1600-065X.2000.17610.xCrossRefPubMed Song A, Nikolcheva T, Krensky AM: Transcriptional regulation of RANTES expression in T lymphocytes. Immunol Rev 2000, 177: 236–245. 10.1034/j.1600-065X.2000.17610.xCrossRefPubMed
57.
go back to reference Liu S, Zhang L, Wu Q, Wu Q, Wang T: Chemokine CCL2 induces apoptosis in cortex following traumatic brain injury. J Mol Neurosci 2013, 51(3):1021–1029. doi:10.1007/s12031–013–0091–8 10.1007/s12031-013-0091-8CrossRefPubMed Liu S, Zhang L, Wu Q, Wu Q, Wang T: Chemokine CCL2 induces apoptosis in cortex following traumatic brain injury. J Mol Neurosci 2013, 51(3):1021–1029. doi:10.1007/s12031–013–0091–8 10.1007/s12031-013-0091-8CrossRefPubMed
58.
go back to reference Semple BD, Bye N, Rancan M, Ziebell JM, Morganti-Kossmann MC: Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2−/− mice. J Cereb Blood Flow Metab 2010, 30(4):769–782. doi:10.1038/jcbfm.2009.262 10.1038/jcbfm.2009.262CrossRefPubMed Semple BD, Bye N, Rancan M, Ziebell JM, Morganti-Kossmann MC: Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2−/− mice. J Cereb Blood Flow Metab 2010, 30(4):769–782. doi:10.1038/jcbfm.2009.262 10.1038/jcbfm.2009.262CrossRefPubMed
59.
go back to reference Huang Z, Ha GK, Petitto JM: IL-15 and IL-15R alpha gene deletion: effects on T lymphocyte trafficking and the microglial and neuronal responses to facial nerve axotomy. Neurosci Lett 2007, 417(2):160–164. doi:10.1016/j.neulet.2007.01.086 10.1016/j.neulet.2007.01.086CrossRefPubMedPubMedCentral Huang Z, Ha GK, Petitto JM: IL-15 and IL-15R alpha gene deletion: effects on T lymphocyte trafficking and the microglial and neuronal responses to facial nerve axotomy. Neurosci Lett 2007, 417(2):160–164. doi:10.1016/j.neulet.2007.01.086 10.1016/j.neulet.2007.01.086CrossRefPubMedPubMedCentral
60.
go back to reference Yang MS, Park EJ, Sohn S, Kwon HJ, Shin WH, Pyo HK, Jin B, Choi KS, Jou I, Joe EH: Interleukin-13 and -4 induce death of activated microglia. Glia 2002, 38(4):273–280. doi:10.1002/glia.10057 10.1002/glia.10057CrossRefPubMed Yang MS, Park EJ, Sohn S, Kwon HJ, Shin WH, Pyo HK, Jin B, Choi KS, Jou I, Joe EH: Interleukin-13 and -4 induce death of activated microglia. Glia 2002, 38(4):273–280. doi:10.1002/glia.10057 10.1002/glia.10057CrossRefPubMed
61.
go back to reference Ferreira LC, Regner A, Miotto KD, Moura S, Ikuta N, Vargas AE, Chies JA, Simon D: Increased levels of interleukin-6, -8 and -10 are associated with fatal outcome following severe traumatic brain injury. Brain Inj 2014, 28(10):1311–1316. doi:10.3109/02699052.2014.916818 10.3109/02699052.2014.916818CrossRefPubMed Ferreira LC, Regner A, Miotto KD, Moura S, Ikuta N, Vargas AE, Chies JA, Simon D: Increased levels of interleukin-6, -8 and -10 are associated with fatal outcome following severe traumatic brain injury. Brain Inj 2014, 28(10):1311–1316. doi:10.3109/02699052.2014.916818 10.3109/02699052.2014.916818CrossRefPubMed
62.
go back to reference Schneider Soares FM, Menezes de Souza N, Liborio Schwarzbold M, Paim Diaz A, Costa Nunes J, Hohl A, Abreu N, da Silva P, Vieira J, Lisboa de Souza R, More Bertotti M, Schoder Prediger RD, Neves Linhares M, Bafica A, Walz R: Interleukin-10 is an independent biomarker of severe traumatic brain injury prognosis. Neuroimmunomodulation 2012, 19(6):377–385. doi: 10.1159/000342141 10.1159/000342141CrossRefPubMed Schneider Soares FM, Menezes de Souza N, Liborio Schwarzbold M, Paim Diaz A, Costa Nunes J, Hohl A, Abreu N, da Silva P, Vieira J, Lisboa de Souza R, More Bertotti M, Schoder Prediger RD, Neves Linhares M, Bafica A, Walz R: Interleukin-10 is an independent biomarker of severe traumatic brain injury prognosis. Neuroimmunomodulation 2012, 19(6):377–385. doi: 10.1159/000342141 10.1159/000342141CrossRefPubMed
Metadata
Title
Traumatic brain injury causes selective, CD74-dependent peripheral lymphocyte activation that exacerbates neurodegeneration
Authors
Richard P Tobin
Sanjib Mukherjee
Jessica M Kain
Susannah K Rogers
Stephanie K Henderson
Heather L Motal
M Karen Newell Rogers
Lee A Shapiro
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2014
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/s40478-014-0143-5

Other articles of this Issue 1/2014

Acta Neuropathologica Communications 1/2014 Go to the issue