Skip to main content
Top
Published in: Archives of Orthopaedic and Trauma Surgery 10/2008

01-10-2008 | Orthopaedic Surgery

Transpedicular plate fixator as effective system of spine stabilisation: biomechanical characteristics

Authors: Piotr Pawłowski, Maciej Araszkiewicz, Tomasz Topoliński, Dariusz Mątewski

Published in: Archives of Orthopaedic and Trauma Surgery | Issue 10/2008

Login to get access

Abstract

Introduction

Zespol fixator, which was created in Poland by Ramatowski and Granowski, has an angular stable connection of screws and plate. These properties of this plate fixator, that is effective and not an expensive system of osteosynthesis of shaft of long bone widely used in Poland, impelled us to adapt it as a transpedicular plate fixator of spine.

Aim

The aim of our in vitro study was to measure loads acting on spine stabilized by transpedicular plate fixator and to determine if its stability is comparable with uninjured spine. We also hypothesized that the spine stability with examined fixator had similar properties as spine fixators constructed with screws and rods.

Materials and methods

We tested its biomechanical properties and compared it with a CD device by using specimens of four human spines. Each spine with damage induced in laboratory conditions was stabilised by one of those stabilisers in one (L4–L5) or two (Th12–L2) motion segments and subsequently were subject to load. The spines without and with one of transpedicular stabilization were subject to an unsymmetrical shift of +3/−4 mm for extension–compression and symmetrical shift for bending, in the frontal plane (+0.14/−0.14 rad) and the sagittal plane (+0.11/−0.11 rad), respectively.

Results

Loads during extension–compression and bending in the sagittal plane were similar to the uninjured spine for short stabilization by using both stabilizers and amounted to 92.3 and 98.26%, respectively, of the load range sums of healthy spines. For long stabilization these loads amounted to 93.2 and 84.4%, respectively. Only following short and long stabilization for both devices in case of bending in the frontal plane the increase in loads up to 144.2 and 163.3% of the range sums of uninjured spines was achieved.

Conclusion

It corroborates the fact that the application of the modified Zespol device for spine stabilisation provides the possibility of restoring its load transfer capacity similar to that in the healthy spine and comparable with the CD device.
Literature
1.
go back to reference Abumi K, Panjabi MM, Duranceau J (1989) Biomechanical evaluation of spinal fixation devices. III. Stability provided by six spinal fixation devices and interbody bone graft. Spine 14(11):1249–1255PubMedCrossRef Abumi K, Panjabi MM, Duranceau J (1989) Biomechanical evaluation of spinal fixation devices. III. Stability provided by six spinal fixation devices and interbody bone graft. Spine 14(11):1249–1255PubMedCrossRef
2.
go back to reference Asazuma T, Stokes JA, Moreland MS, Suzuki N (1990) Intersegmental spinal flexibility with lumbosacral instrumentation. An in vitro biomechanical investigation. Spine 15(11):1153–1158PubMedCrossRef Asazuma T, Stokes JA, Moreland MS, Suzuki N (1990) Intersegmental spinal flexibility with lumbosacral instrumentation. An in vitro biomechanical investigation. Spine 15(11):1153–1158PubMedCrossRef
3.
go back to reference Ashman RB, Galpin RD, Corin JD, Johnston CE 2nd (1989) Biomechanical analysis of pedicle screw instrumentation systems in corpectomy model. Spine 14(12):1398–1405PubMedCrossRef Ashman RB, Galpin RD, Corin JD, Johnston CE 2nd (1989) Biomechanical analysis of pedicle screw instrumentation systems in corpectomy model. Spine 14(12):1398–1405PubMedCrossRef
4.
go back to reference Boos N, Marchesi D, Aebi M (1992) Survivorship analysis of pedicular fixation systems in the treatment of degenerative disorders of the lumbar spine: a comparison of Cotrel–Dubousset instrumentation and the AO internal fixator. J Spinal Disord 5(4):403–409PubMedCrossRef Boos N, Marchesi D, Aebi M (1992) Survivorship analysis of pedicular fixation systems in the treatment of degenerative disorders of the lumbar spine: a comparison of Cotrel–Dubousset instrumentation and the AO internal fixator. J Spinal Disord 5(4):403–409PubMedCrossRef
5.
go back to reference Brodke DS, Bachus KN, Mohr RA, Nguyen BK (2001) Segmental pedicle screw fixation or cross-links in multilevel lumbar constructs: a biomechanical analysis. Spine J 1(5):373–379PubMedCrossRef Brodke DS, Bachus KN, Mohr RA, Nguyen BK (2001) Segmental pedicle screw fixation or cross-links in multilevel lumbar constructs: a biomechanical analysis. Spine J 1(5):373–379PubMedCrossRef
6.
go back to reference Dickmann CA, Fessler RG, McMillan M, Haid RW (1992) Transpedicular screw-rod fixation of the lumbar spine: operative technique and outcome in 104 cases. J Neurosurg 77(6):860–870 Dickmann CA, Fessler RG, McMillan M, Haid RW (1992) Transpedicular screw-rod fixation of the lumbar spine: operative technique and outcome in 104 cases. J Neurosurg 77(6):860–870
7.
go back to reference Eger W, Kluger P, Claes L, Wilke HJ (1999) Characteristics of an extended internal fixation system for polysegmental transpedicular reduction and stabilisation of the thoracic, lumbar, and lumbosacral spine. Eur Spine J 8(1):61–69PubMedCrossRef Eger W, Kluger P, Claes L, Wilke HJ (1999) Characteristics of an extended internal fixation system for polysegmental transpedicular reduction and stabilisation of the thoracic, lumbar, and lumbosacral spine. Eur Spine J 8(1):61–69PubMedCrossRef
8.
go back to reference Ferguson RL, Tencer AF, Woodard P, Allen BL (1988) Biomechanical comparisons of spinal fracture models and the stabilizing effects of posterior instrumentations. Spine 13(5):453–460PubMedCrossRef Ferguson RL, Tencer AF, Woodard P, Allen BL (1988) Biomechanical comparisons of spinal fracture models and the stabilizing effects of posterior instrumentations. Spine 13(5):453–460PubMedCrossRef
9.
go back to reference Granowski R, Ramotowski W, Kaminski E, Pilawski K (1984) [“Zespol”—a new type of osteosynthesis. I. An internal self-compressing stabilizer of bone fragments]. Chir Narzadow Ruchu Ortop Pol 49(4):301–305PubMed Granowski R, Ramotowski W, Kaminski E, Pilawski K (1984) [“Zespol”—a new type of osteosynthesis. I. An internal self-compressing stabilizer of bone fragments]. Chir Narzadow Ruchu Ortop Pol 49(4):301–305PubMed
10.
go back to reference Gurr KR, McAfee PC, Shih CM (1988) Biomechanical analysis of anterior and posterior instrumentation systems after corpectomy. A calf-spine model. J Bone Joint Surg [Am] 70(8):1182–1191 Gurr KR, McAfee PC, Shih CM (1988) Biomechanical analysis of anterior and posterior instrumentation systems after corpectomy. A calf-spine model. J Bone Joint Surg [Am] 70(8):1182–1191
11.
go back to reference Gurr KR, McAfee PC, Shih CM (1988) Biomechanical analysis of posterior instrumentation systems after decompressive laminectomy. An unstable calf-spine model. J Bone Joint Surg Am 70(5):680–691PubMed Gurr KR, McAfee PC, Shih CM (1988) Biomechanical analysis of posterior instrumentation systems after decompressive laminectomy. An unstable calf-spine model. J Bone Joint Surg Am 70(5):680–691PubMed
12.
go back to reference Gwon JK, Chen J, Lim TH, Han JS, Weinstein JN, Goel VK (1991) In vitro comparative biomechanical analysis of transpedicular screw instrumentations in the lumbar region of the human spine. J Spinal Disord 4(4):437–443PubMed Gwon JK, Chen J, Lim TH, Han JS, Weinstein JN, Goel VK (1991) In vitro comparative biomechanical analysis of transpedicular screw instrumentations in the lumbar region of the human spine. J Spinal Disord 4(4):437–443PubMed
13.
go back to reference Lim TH, An HS, Hong JH, Ahn JY, You JW, Eck J, McGrady LM (1997) Biomechanical evaluation of anterior and posterior fixations in an unstable calf spine model. Spine 22(3):261–266PubMedCrossRef Lim TH, An HS, Hong JH, Ahn JY, You JW, Eck J, McGrady LM (1997) Biomechanical evaluation of anterior and posterior fixations in an unstable calf spine model. Spine 22(3):261–266PubMedCrossRef
14.
go back to reference Lund T, Nydegger T, Rathonyi G, Nolte LP, Schlenzka D, Oxland TR (2003) Three-dimensional stabilisation provided by the external spinal fixator compared to two internal fixation devices: a biomechanical in vitro flexibility study. Eur Spine J 12(5):474–479PubMedCrossRef Lund T, Nydegger T, Rathonyi G, Nolte LP, Schlenzka D, Oxland TR (2003) Three-dimensional stabilisation provided by the external spinal fixator compared to two internal fixation devices: a biomechanical in vitro flexibility study. Eur Spine J 12(5):474–479PubMedCrossRef
15.
go back to reference Marqulies JY, Thampi SP, Bitan FD, Cora DC (1999) Practical biomechanical considerations for spine implant testing. Chir Narzadow Ruchu Ortop Pol 64(3):347–364 Marqulies JY, Thampi SP, Bitan FD, Cora DC (1999) Practical biomechanical considerations for spine implant testing. Chir Narzadow Ruchu Ortop Pol 64(3):347–364
17.
go back to reference Pawlowski P, Topolinski T, Wocianiec R (2006) Grip for in vitro strength tests of spines or spine-internal spine fixator sets. Eng Mech 13(1):41–48 Pawlowski P, Topolinski T, Wocianiec R (2006) Grip for in vitro strength tests of spines or spine-internal spine fixator sets. Eng Mech 13(1):41–48
18.
go back to reference Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine 13(10):1129–1134PubMed Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine 13(10):1129–1134PubMed
19.
go back to reference Panjabi MM, Krag M, Summers D, Videman T (1985) Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res 3(3):292–300PubMedCrossRef Panjabi MM, Krag M, Summers D, Videman T (1985) Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res 3(3):292–300PubMedCrossRef
20.
go back to reference Pfeiffer M, Hoffman H, Goel VK, Weinstein JN, Griss P (1997) In vitro testing of a new transpedicular stabilization technique. Eur Spine J 6(4):249–255PubMedCrossRef Pfeiffer M, Hoffman H, Goel VK, Weinstein JN, Griss P (1997) In vitro testing of a new transpedicular stabilization technique. Eur Spine J 6(4):249–255PubMedCrossRef
21.
go back to reference Przybyszewski J, Podraza Z, Ziomek M, Karas W (1992) Universal hip fixator “Zespol”. Construction of the fixator, principles of function, instrumentation, surgical technique, indications and results of treatment. Chir Narzadow Ruchu Ortop Pol 57(1–3):256–262PubMed Przybyszewski J, Podraza Z, Ziomek M, Karas W (1992) Universal hip fixator “Zespol”. Construction of the fixator, principles of function, instrumentation, surgical technique, indications and results of treatment. Chir Narzadow Ruchu Ortop Pol 57(1–3):256–262PubMed
22.
go back to reference Ramotowski W, Granowski R, Pilawski K, Cieplak J, Karas W (1984) “Zespol”–a new type of osteosynthesis. II. Indications, instruments and surgical technics. Chir Narzadow Ruchu Ortop Pol 49(4):307–311PubMed Ramotowski W, Granowski R, Pilawski K, Cieplak J, Karas W (1984) “Zespol”–a new type of osteosynthesis. II. Indications, instruments and surgical technics. Chir Narzadow Ruchu Ortop Pol 49(4):307–311PubMed
23.
go back to reference Ramotowski W, Granowski R (1984) “Zespol”–a new type of osteosynthesis. III. Results of treatment. Chir Narzadow Ruchu Ortop Pol 49(4):313–318PubMed Ramotowski W, Granowski R (1984) “Zespol”–a new type of osteosynthesis. III. Results of treatment. Chir Narzadow Ruchu Ortop Pol 49(4):313–318PubMed
24.
go back to reference Ramotowski W, Granowski R. (1991) Zespol. An original method of stable osteosynthesis. Clin Orthop Relat Res 272:67–75PubMed Ramotowski W, Granowski R. (1991) Zespol. An original method of stable osteosynthesis. Clin Orthop Relat Res 272:67–75PubMed
25.
go back to reference Rohlmann A, Bergmann G, Graichen F, Mayer HM (1995) Telemeterized load measurement using instrumented spinal internal fixators in a patient with degenerative instability. Spine 20(24):2683–2689PubMedCrossRef Rohlmann A, Bergmann G, Graichen F, Mayer HM (1995) Telemeterized load measurement using instrumented spinal internal fixators in a patient with degenerative instability. Spine 20(24):2683–2689PubMedCrossRef
26.
go back to reference Rohlmann A, Zander T, Bergmann G (2005) Comparison of the biomechanical effects of posterior and anterior spine-stabilizing implants. Eur Spine J 14(5):445–453PubMedCrossRef Rohlmann A, Zander T, Bergmann G (2005) Comparison of the biomechanical effects of posterior and anterior spine-stabilizing implants. Eur Spine J 14(5):445–453PubMedCrossRef
27.
go back to reference Shono Y, Kaneda K, Yamamoto I (1991) A biomechanical analysis of Zielke, Kaneda, and Cotrel–Dubousset instrumentation in thoracolumbar scoliosis. A calf spine model. Spine 16(11):1305–1311PubMedCrossRef Shono Y, Kaneda K, Yamamoto I (1991) A biomechanical analysis of Zielke, Kaneda, and Cotrel–Dubousset instrumentation in thoracolumbar scoliosis. A calf spine model. Spine 16(11):1305–1311PubMedCrossRef
28.
go back to reference Steffee AD, Brantigan JW (1993) The variable screw placement spinal fixation system. Report of a prospective study of 250 patients enrolled in food and drug administration clinical trials. Spine 18(9):1160–1172PubMedCrossRef Steffee AD, Brantigan JW (1993) The variable screw placement spinal fixation system. Report of a prospective study of 250 patients enrolled in food and drug administration clinical trials. Spine 18(9):1160–1172PubMedCrossRef
29.
go back to reference Szostek S, Szust A, Pezowicz C, Majcher P, Będziński R (2004) Animal models in biomechanical spine investigations. Bull Vet Inst 48(2):163–168 Szostek S, Szust A, Pezowicz C, Majcher P, Będziński R (2004) Animal models in biomechanical spine investigations. Bull Vet Inst 48(2):163–168
30.
go back to reference Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec 251(1):15–19PubMedCrossRef Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec 251(1):15–19PubMedCrossRef
31.
go back to reference Wilke HJ, Krischak ST, Wenger KH, Claes LE (1997) Load-displacement properties of the thoracolumbar calf spine: experimental results and comparison to known human data. Eur Spine J 6(2):129–137PubMedCrossRef Wilke HJ, Krischak ST, Wenger KH, Claes LE (1997) Load-displacement properties of the thoracolumbar calf spine: experimental results and comparison to known human data. Eur Spine J 6(2):129–137PubMedCrossRef
32.
go back to reference Zucherman J, Hsu K, White A, Wynne G (1988) Early results of spinal fusion using variable spine plating system. Spine 13(5):570–579PubMedCrossRef Zucherman J, Hsu K, White A, Wynne G (1988) Early results of spinal fusion using variable spine plating system. Spine 13(5):570–579PubMedCrossRef
Metadata
Title
Transpedicular plate fixator as effective system of spine stabilisation: biomechanical characteristics
Authors
Piotr Pawłowski
Maciej Araszkiewicz
Tomasz Topoliński
Dariusz Mątewski
Publication date
01-10-2008
Publisher
Springer-Verlag
Published in
Archives of Orthopaedic and Trauma Surgery / Issue 10/2008
Print ISSN: 0936-8051
Electronic ISSN: 1434-3916
DOI
https://doi.org/10.1007/s00402-008-0627-5

Other articles of this Issue 10/2008

Archives of Orthopaedic and Trauma Surgery 10/2008 Go to the issue