Skip to main content
Top
Published in: BMC Neurology 1/2018

Open Access 01-12-2018 | Research article

Transient increase in CSF GAP-43 concentration after ischemic stroke

Authors: Åsa Sandelius, Nicholas C. Cullen, Åsa Källén, Lars Rosengren, Crister Jensen, Vesna Kostanjevecki, Manu Vandijck, Henrik Zetterberg, Kaj Blennow

Published in: BMC Neurology | Issue 1/2018

Login to get access

Abstract

Background

Cerebrospinal fluid (CSF) biomarkers reflect ongoing processes in the brain. Growth-associated protein 43 (GAP-43) is highly upregulated in brain tissue shortly after experimental ischemia suggesting the CSF GAP-43 concentration may be altered in ischemic brain disorders. CSF GAP-43 concentration is elevated in Alzheimer’s disease patients; however, patients suffering from stroke have not been studied previously.

Methods

The concentration of GAP-43 was measured in longitudinal CSF samples from 28 stroke patients prospectively collected on days 0–1, 2–4, 7–9, 3 weeks, and 3–5 months after ischemia and cross-sectionally in 19 controls. The stroke patients were clinically evaluated using a stroke severity score system. The extent of the brain lesion, including injury size and degrees of white matter lesions and atrophy were evaluated by CT and magnetic resonance imaging.

Results

Increased GAP-43 concentration was detected from day 7–9 to 3 weeks after stroke, compared to day 1–4 and to levels in the control group (P = 0.02 and P = 0.007). At 3–5 months after stroke GAP-43 returned to admission levels. The initial increase in GAP-43 during the nine first days was associated to stroke severity, the degree of white matter lesions and atrophy and correlated positively with infarct size (rs = 0.65, P = 0.001).

Conclusions

The transient increase of CSF GAP-43 is important to take into account when used as a biomarker for other neurodegenerative diseases such as Alzheimer’s disease. Furthermore, GAP-43 may be a marker of neuronal responses after stroke and additional studies confirming the potential of CSF GAP-43 to reflect severity and outcome of stroke in larger cohorts are warranted.
Appendix
Available only for authorised users
Literature
1.
go back to reference Neve RL, Finch EA, Bird ED, Benowitz LI. Growth-associated protein GAP-43 is expressed selectively in associative regions of the adult human brain. Proc Natl Acad Sci U S A. 1988;85(10):3638–42.CrossRefPubMedPubMedCentral Neve RL, Finch EA, Bird ED, Benowitz LI. Growth-associated protein GAP-43 is expressed selectively in associative regions of the adult human brain. Proc Natl Acad Sci U S A. 1988;85(10):3638–42.CrossRefPubMedPubMedCentral
2.
go back to reference De la Monte SM, Federoff HJ, Ng SC, Grabczyk E, Fishman MC. GAP-43 gene expression during development: persistence in a distinctive set of neurons in the mature central nervous system. Brain Res Dev Brain Res. 1989;46(2):161–8.CrossRefPubMed De la Monte SM, Federoff HJ, Ng SC, Grabczyk E, Fishman MC. GAP-43 gene expression during development: persistence in a distinctive set of neurons in the mature central nervous system. Brain Res Dev Brain Res. 1989;46(2):161–8.CrossRefPubMed
3.
go back to reference Riascos D, Nicholas A, Samaeekia R, Yukhananov R, Mesulam MM, Bigio EH, et al. Alterations of ca (2) (+)-responsive proteins within cholinergic neurons in aging and Alzheimer’s disease. Neurobiol Aging. 2014;35(6):1325–33.CrossRefPubMed Riascos D, Nicholas A, Samaeekia R, Yukhananov R, Mesulam MM, Bigio EH, et al. Alterations of ca (2) (+)-responsive proteins within cholinergic neurons in aging and Alzheimer’s disease. Neurobiol Aging. 2014;35(6):1325–33.CrossRefPubMed
4.
go back to reference Aigner L, Arber S, Kapfhammer JP, Laux T, Schneider C, Botteri F, et al. Overexpression of the neural growth-associated protein gap-43 induces nerve sprouting in the adult nervous-system of transgenic mice. Cell. 1995;83(2):269–78.CrossRefPubMed Aigner L, Arber S, Kapfhammer JP, Laux T, Schneider C, Botteri F, et al. Overexpression of the neural growth-associated protein gap-43 induces nerve sprouting in the adult nervous-system of transgenic mice. Cell. 1995;83(2):269–78.CrossRefPubMed
5.
go back to reference Skene JHP, Jacobson RD, Snipes GJ, Mcguire CB, Norden JJ, Freeman JA. A protein-induced during nerve growth (gap-43) is a major component of growth-cone membranes. Science. 1986;233(4765):783–6.CrossRefPubMed Skene JHP, Jacobson RD, Snipes GJ, Mcguire CB, Norden JJ, Freeman JA. A protein-induced during nerve growth (gap-43) is a major component of growth-cone membranes. Science. 1986;233(4765):783–6.CrossRefPubMed
6.
go back to reference Routtenberg A, Cantallops I, Zaffuto S, Serrano P, Namgung U. Enhanced learning after genetic overexpression of a brain growth protein. Proc Natl Acad Sci U S A. 2000;97(13):7657–62.CrossRefPubMedPubMedCentral Routtenberg A, Cantallops I, Zaffuto S, Serrano P, Namgung U. Enhanced learning after genetic overexpression of a brain growth protein. Proc Natl Acad Sci U S A. 2000;97(13):7657–62.CrossRefPubMedPubMedCentral
7.
go back to reference Holahan MR, Honegger KS, Routtenberg A. Ectopic growth of hippocampal mossy fibers in a mutated GAP-43 transgenic mouse with impaired spatial memory retention. Hippocampus. 2010;20(1):58–64.CrossRefPubMedPubMedCentral Holahan MR, Honegger KS, Routtenberg A. Ectopic growth of hippocampal mossy fibers in a mutated GAP-43 transgenic mouse with impaired spatial memory retention. Hippocampus. 2010;20(1):58–64.CrossRefPubMedPubMedCentral
8.
go back to reference Allegra Mascaro AL, Cesare P, Sacconi L, Grasselli G, Mandolesi G, Maco B, et al. In vivo single branch axotomy induces GAP-43-dependent sprouting and synaptic remodeling in cerebellar cortex. Proc Natl Acad Sci U S A. 2013;110(26):10824–9.CrossRefPubMedPubMedCentral Allegra Mascaro AL, Cesare P, Sacconi L, Grasselli G, Mandolesi G, Maco B, et al. In vivo single branch axotomy induces GAP-43-dependent sprouting and synaptic remodeling in cerebellar cortex. Proc Natl Acad Sci U S A. 2013;110(26):10824–9.CrossRefPubMedPubMedCentral
9.
go back to reference Young EA, Owen EH, Meiri KF, Wehner JM. Alterations in hippocampal GAP-43 phosphorylation and protein level following contextual fear conditioning. Brain Res. 2000;860(1–2):95–103.CrossRefPubMed Young EA, Owen EH, Meiri KF, Wehner JM. Alterations in hippocampal GAP-43 phosphorylation and protein level following contextual fear conditioning. Brain Res. 2000;860(1–2):95–103.CrossRefPubMed
10.
go back to reference Nemes AD, Ayasoufi K, Ying Z, Zhou QG, Suh H, Najm IM. Growth associated protein 43 (GAP-43) as a novel target for the diagnosis, treatment and prevention of Epileptogenesis. Sci Rep. 2017;7(1):17702.CrossRefPubMedPubMedCentral Nemes AD, Ayasoufi K, Ying Z, Zhou QG, Suh H, Najm IM. Growth associated protein 43 (GAP-43) as a novel target for the diagnosis, treatment and prevention of Epileptogenesis. Sci Rep. 2017;7(1):17702.CrossRefPubMedPubMedCentral
11.
go back to reference Gorup D, Bohacek I, Milicevic T, Pochet R, Mitrecic D, Kriz J, et al. Increased expression and colocalization of GAP43 and CASP3 after brain ischemic lesion in mouse. Neurosci Lett. 2015;597:176–82.CrossRefPubMed Gorup D, Bohacek I, Milicevic T, Pochet R, Mitrecic D, Kriz J, et al. Increased expression and colocalization of GAP43 and CASP3 after brain ischemic lesion in mouse. Neurosci Lett. 2015;597:176–82.CrossRefPubMed
12.
go back to reference Chong MS, Reynolds ML, Irwin N, Coggeshall RE, Emson PC, Benowitz LI, et al. Gap-43 expression in primary sensory neurons following central Axotomy. J Neurosci. 1994;14(7):4375–84.CrossRefPubMed Chong MS, Reynolds ML, Irwin N, Coggeshall RE, Emson PC, Benowitz LI, et al. Gap-43 expression in primary sensory neurons following central Axotomy. J Neurosci. 1994;14(7):4375–84.CrossRefPubMed
13.
go back to reference Hulsebosch CE, DeWitt DS, Jenkins LW, Prough DS. Traumatic brain injury in rats results in increased expression of gap-43 that correlates with behavioral recovery. Neurosci Lett. 1998;255(2):83–6.CrossRefPubMed Hulsebosch CE, DeWitt DS, Jenkins LW, Prough DS. Traumatic brain injury in rats results in increased expression of gap-43 that correlates with behavioral recovery. Neurosci Lett. 1998;255(2):83–6.CrossRefPubMed
14.
go back to reference Yamada K, Goto S, Oyama T, Inoue N, Nagahiro S, Ushio Y. In-vivo induction of the growth-associated protein Gap43/B-50 in rat astrocytes following transient middle cerebral-artery occlusion. Acta Neuropathol. 1994;88(6):553–7.CrossRefPubMed Yamada K, Goto S, Oyama T, Inoue N, Nagahiro S, Ushio Y. In-vivo induction of the growth-associated protein Gap43/B-50 in rat astrocytes following transient middle cerebral-artery occlusion. Acta Neuropathol. 1994;88(6):553–7.CrossRefPubMed
15.
go back to reference Stroemer RP, Kent TA, Hulsebosch CE. Acute increase in expression of growth associated protein GAP-43 following cortical ischemia in rat. Neurosci Lett. 1993;162(1–2):51–4.CrossRefPubMed Stroemer RP, Kent TA, Hulsebosch CE. Acute increase in expression of growth associated protein GAP-43 following cortical ischemia in rat. Neurosci Lett. 1993;162(1–2):51–4.CrossRefPubMed
16.
go back to reference Goto S, Yamada K, Inoue N, Nagahiro S, Ushio Y. Increased expression of growth-associated protein GAP-43/B-50 following cerebral hemitransection or striatal ischemic injury in the substantia nigra of adult rats. Brain Res. 1994;647(2):333–9.CrossRefPubMed Goto S, Yamada K, Inoue N, Nagahiro S, Ushio Y. Increased expression of growth-associated protein GAP-43/B-50 following cerebral hemitransection or striatal ischemic injury in the substantia nigra of adult rats. Brain Res. 1994;647(2):333–9.CrossRefPubMed
17.
go back to reference Li Y, Jiang N, Powers C, Chopp M. Neuronal damage and plasticity identified by microtubule-associated protein 2, growth-associated protein 43, and cyclin D1 immunoreactivity after focal cerebral ischemia in rats. Stroke 1998;29(9):1972–80; discussion 80–1. Li Y, Jiang N, Powers C, Chopp M. Neuronal damage and plasticity identified by microtubule-associated protein 2, growth-associated protein 43, and cyclin D1 immunoreactivity after focal cerebral ischemia in rats. Stroke 1998;29(9):1972–80; discussion 80–1.
18.
go back to reference Carmichael ST, Archibeque I, Luke L, Nolan T, Momiy J, Li S. Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex. Exp Neurol. 2005;193(2):291–311.CrossRefPubMed Carmichael ST, Archibeque I, Luke L, Nolan T, Momiy J, Li S. Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex. Exp Neurol. 2005;193(2):291–311.CrossRefPubMed
19.
go back to reference Tarkowski E, Rosengren L, Blomstrand C, Wikkelso C, Jensen C, Ekholm S, et al. Early intrathecal production of interleukin-6 predicts the size of brain lesion in stroke. Stroke. 1995;26(8):1393–8.CrossRef Tarkowski E, Rosengren L, Blomstrand C, Wikkelso C, Jensen C, Ekholm S, et al. Early intrathecal production of interleukin-6 predicts the size of brain lesion in stroke. Stroke. 1995;26(8):1393–8.CrossRef
20.
go back to reference Multicenter trial of hemodilution in ischemic stroke--background and study protocol. Scandinavian stroke study group. Stroke. 1985;16(5):885–90. Multicenter trial of hemodilution in ischemic stroke--background and study protocol. Scandinavian stroke study group. Stroke. 1985;16(5):885–90.
21.
go back to reference Sandelius A, Portelius E, Kallen A, Zetterberg H, Rot U, Olsson B, et al. Elevated CSF GAP-43 is Alzheimer's disease specific and associated with tau and amyloid pathology. Alzheimers Dement. 2018. Sandelius A, Portelius E, Kallen A, Zetterberg H, Rot U, Olsson B, et al. Elevated CSF GAP-43 is Alzheimer's disease specific and associated with tau and amyloid pathology. Alzheimers Dement. 2018.
22.
go back to reference Dijkhuizen RM, Singhal AB, Mandeville JB, Wu O, Halpern EF, Finklestein SP, et al. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J Neurosci. 2003;23(2):510–7.CrossRefPubMed Dijkhuizen RM, Singhal AB, Mandeville JB, Wu O, Halpern EF, Finklestein SP, et al. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J Neurosci. 2003;23(2):510–7.CrossRefPubMed
23.
go back to reference Wang L, Yu C, Chen H, Qin W, He Y, Fan F, et al. Dynamic functional reorganization of the motor execution network after stroke. Brain. 2010;133(Pt 4):1224–38.CrossRefPubMed Wang L, Yu C, Chen H, Qin W, He Y, Fan F, et al. Dynamic functional reorganization of the motor execution network after stroke. Brain. 2010;133(Pt 4):1224–38.CrossRefPubMed
24.
go back to reference Ward NS. Functional reorganization of the cerebral motor system after stroke. Curr Opin Neurol. 2004;17(6):725–30.CrossRefPubMed Ward NS. Functional reorganization of the cerebral motor system after stroke. Curr Opin Neurol. 2004;17(6):725–30.CrossRefPubMed
25.
go back to reference Kantak SS, Stinear JW, Buch ER, Cohen LG. Rewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injury. Neurorehabil Neural Repair. 2012;26(3):282–92.CrossRefPubMed Kantak SS, Stinear JW, Buch ER, Cohen LG. Rewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injury. Neurorehabil Neural Repair. 2012;26(3):282–92.CrossRefPubMed
26.
go back to reference Carmichael ST, Kathirvelu B, Schweppe CA, Nie EH. Molecular, cellular and functional events in axonal sprouting after stroke. Exp Neurol. 2017;287(Pt 3):384–94.CrossRefPubMed Carmichael ST, Kathirvelu B, Schweppe CA, Nie EH. Molecular, cellular and functional events in axonal sprouting after stroke. Exp Neurol. 2017;287(Pt 3):384–94.CrossRefPubMed
27.
go back to reference Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40(5):e331–9.CrossRefPubMed Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40(5):e331–9.CrossRefPubMed
28.
go back to reference Nakano S, Kogure K, Fujikura H. Ischemia-induced slowly progressive neuronal damage in the rat brain. Neuroscience. 1990;38(1):115–24.CrossRefPubMed Nakano S, Kogure K, Fujikura H. Ischemia-induced slowly progressive neuronal damage in the rat brain. Neuroscience. 1990;38(1):115–24.CrossRefPubMed
29.
go back to reference Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol. 1982;11(5):491–8.CrossRefPubMed Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol. 1982;11(5):491–8.CrossRefPubMed
30.
go back to reference Akulinin VA, Belichenko PV, Dahlstrom A. The cellular distribution of GAP-43 immunoreactivity in human neocortical areas using immunofluorescence and confocal microscopy: post-ischemic influence. Brain Res. 1998;784(1–2):341–6.CrossRefPubMed Akulinin VA, Belichenko PV, Dahlstrom A. The cellular distribution of GAP-43 immunoreactivity in human neocortical areas using immunofluorescence and confocal microscopy: post-ischemic influence. Brain Res. 1998;784(1–2):341–6.CrossRefPubMed
31.
go back to reference Chavez-Valdez R, Emerson P, Goffigan-Holmes J, Kirkwood A, Martin LJ, Northington FJ. Delayed injury of hippocampal interneurons after neonatal hypoxia-ischemia and therapeutic hypothermia in a murine model. Hippocampus. 2018;28(8):617–30.CrossRefPubMed Chavez-Valdez R, Emerson P, Goffigan-Holmes J, Kirkwood A, Martin LJ, Northington FJ. Delayed injury of hippocampal interneurons after neonatal hypoxia-ischemia and therapeutic hypothermia in a murine model. Hippocampus. 2018;28(8):617–30.CrossRefPubMed
32.
go back to reference De Vos A, Bjerke M, Brouns R, De Roeck N, Jacobs D, Van den Abbeele L, et al. Neurogranin and tau in cerebrospinal fluid and plasma of patients with acute ischemic stroke. BMC Neurol. 2017;17(1):170.CrossRefPubMedPubMedCentral De Vos A, Bjerke M, Brouns R, De Roeck N, Jacobs D, Van den Abbeele L, et al. Neurogranin and tau in cerebrospinal fluid and plasma of patients with acute ischemic stroke. BMC Neurol. 2017;17(1):170.CrossRefPubMedPubMedCentral
33.
go back to reference Hesse C, Rosengren L, Andreasen N, Davidsson P, Vanderstichele H, Vanmechelen E, et al. Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci Lett. 2001;297(3):187–90.CrossRefPubMed Hesse C, Rosengren L, Andreasen N, Davidsson P, Vanderstichele H, Vanmechelen E, et al. Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci Lett. 2001;297(3):187–90.CrossRefPubMed
34.
go back to reference Ihle-Hansen H, Hagberg G, Fure B, Thommessen B, Fagerland MW, Oksengard AR, et al. Association between total-tau and brain atrophy one year after first-ever stroke. BMC Neurol. 2017;17(1):107.CrossRefPubMedPubMedCentral Ihle-Hansen H, Hagberg G, Fure B, Thommessen B, Fagerland MW, Oksengard AR, et al. Association between total-tau and brain atrophy one year after first-ever stroke. BMC Neurol. 2017;17(1):107.CrossRefPubMedPubMedCentral
35.
go back to reference Ost M, Nylen K, Csajbok L, Ohrfelt AO, Tullberg M, Wikkelso C, et al. Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology. 2006;67(9):1600–4.CrossRefPubMed Ost M, Nylen K, Csajbok L, Ohrfelt AO, Tullberg M, Wikkelso C, et al. Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology. 2006;67(9):1600–4.CrossRefPubMed
36.
go back to reference Kaerst L, Kuhlmann A, Wedekind D, Stoeck K, Lange P, Zerr I. Cerebrospinal fluid biomarkers in Alzheimer's disease, vascular dementia and ischemic stroke patients: a critical analysis. J Neurol. 2013;260(11):2722–7.CrossRefPubMedPubMedCentral Kaerst L, Kuhlmann A, Wedekind D, Stoeck K, Lange P, Zerr I. Cerebrospinal fluid biomarkers in Alzheimer's disease, vascular dementia and ischemic stroke patients: a critical analysis. J Neurol. 2013;260(11):2722–7.CrossRefPubMedPubMedCentral
37.
go back to reference Starmark JE, Stalhammar D, Holmgren E. The reaction level scale (RLS85). Manual and guidelines. Acta Neurochir (Wien). 1988;91(1–2):12–20.CrossRef Starmark JE, Stalhammar D, Holmgren E. The reaction level scale (RLS85). Manual and guidelines. Acta Neurochir (Wien). 1988;91(1–2):12–20.CrossRef
Metadata
Title
Transient increase in CSF GAP-43 concentration after ischemic stroke
Authors
Åsa Sandelius
Nicholas C. Cullen
Åsa Källén
Lars Rosengren
Crister Jensen
Vesna Kostanjevecki
Manu Vandijck
Henrik Zetterberg
Kaj Blennow
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2018
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-018-1210-5

Other articles of this Issue 1/2018

BMC Neurology 1/2018 Go to the issue