Skip to main content
Top
Published in: Molecular Cancer 1/2011

Open Access 01-12-2011 | Research

Transglutaminase 2 as an independent prognostic marker for survival of patients with non-adenocarcinoma subtype of non-small cell lung cancer

Authors: Chang-Min Choi, Se-Jin Jang, Seong-Yeol Park, Yong-Bock Choi, Jae-Heon Jeong, Dae-Seok Kim, Hyun-Kyoung Kim, Kang-Seo Park, Byung-Ho Nam, Hyeong-Ryul Kim, Soo-Youl Kim, Kyeong-Man Hong, Korean Thoracic Oncology Research Group (KTORG)

Published in: Molecular Cancer | Issue 1/2011

Login to get access

Abstract

Background

Expression of transglutaminase 2 (TGase 2) is related to invasion and resistance to chemotherapeutic agents in several cancer cells. However, there has been only limited clinical validation of TGase 2 as an independent prognostic marker in cancer.

Methods

The significance of TGase 2 expression as an invasive/migratory factor was addressed by in vitro assays employing down-regulation of TGase 2. TGase 2 expression as a prognostic indicator was assessed in 429 Korean patients with early-stage non-small cell lung cancer (NSCLC) by immunohistochemical staining.

Results

TGase 2 expression increased the invasive and migratory properties of NSCLC cells in vitro, which might be related to the induction of MMP-9. In the analysis of the immunohistochemical staining, TGase 2 expression in tumors was significantly correlated with recurrence in NSCLC (p = 0.005) or in the non-adenocarcinoma subtype (p = 0.031). Additionally, a multivariate analysis also showed a significant correlation between strong TGase 2 expression and shorter disease-free survival (DFS) in NSCLC (p = 0.029 and HR = 1.554) and in the non-adenocarcinoma subtype (p = 0.030 and HR = 2.184). However, the correlation in the adenocarcinoma subtype was not significant.

Conclusions

TGase 2 expression was significantly correlated with recurrence and shorter DFS in NSCLC, especially in the non-adenocarcinoma subtype including squamous cell carcinoma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kim HS, Park K, Jun HJ, Yi SY, Lee J, Ahn JS, Park YH, Kim S, Lee S, Ahn MJ: Comparison of survival in advanced non-small cell lung cancer patients in the pre- and post-gefitinib eras. Oncology. 2009, 76: 239-246. 10.1159/000205386CrossRefPubMed Kim HS, Park K, Jun HJ, Yi SY, Lee J, Ahn JS, Park YH, Kim S, Lee S, Ahn MJ: Comparison of survival in advanced non-small cell lung cancer patients in the pre- and post-gefitinib eras. Oncology. 2009, 76: 239-246. 10.1159/000205386CrossRefPubMed
2.
go back to reference Coate LE, Leighl NB: How Affordable are Targeted Therapies in Non-Small Cell Lung Cancer?. Curr Treat Options Oncol. 2011 Coate LE, Leighl NB: How Affordable are Targeted Therapies in Non-Small Cell Lung Cancer?. Curr Treat Options Oncol. 2011
3.
go back to reference Scagliotti G, Hanna N, Fossella F, Sugarman K, Blatter J, Peterson P, Simms L, Shepherd FA: The differential efficacy of pemetrexed according to NSCLC histology: a review of two Phase III studies. Oncologist. 2009, 14: 253-263. 10.1634/theoncologist.2008-0232CrossRefPubMed Scagliotti G, Hanna N, Fossella F, Sugarman K, Blatter J, Peterson P, Simms L, Shepherd FA: The differential efficacy of pemetrexed according to NSCLC histology: a review of two Phase III studies. Oncologist. 2009, 14: 253-263. 10.1634/theoncologist.2008-0232CrossRefPubMed
4.
go back to reference Lorand L, Graham RM: Transglutaminases: crosslinking enzymes with pleiotropic functions. Nature Reviews Molecular Cell Biology. 2003, 4: 140-156. 10.1038/nrm1014CrossRefPubMed Lorand L, Graham RM: Transglutaminases: crosslinking enzymes with pleiotropic functions. Nature Reviews Molecular Cell Biology. 2003, 4: 140-156. 10.1038/nrm1014CrossRefPubMed
5.
go back to reference Han JA, Park SC: Reduction of transglutaminase 2 expression is associated with an induction of drug sensitivity in the PC-14 human lung cancer cell line. J Cancer Res Clin Oncol. 1999, 125: 89-95. 10.1007/s004320050247CrossRefPubMed Han JA, Park SC: Reduction of transglutaminase 2 expression is associated with an induction of drug sensitivity in the PC-14 human lung cancer cell line. J Cancer Res Clin Oncol. 1999, 125: 89-95. 10.1007/s004320050247CrossRefPubMed
6.
go back to reference Cao L, Petrusca DN, Satpathy M, Nakshatri H, Petrache I, Matei D: Tissue transglutaminase protects epithelial ovarian cancer cells from cisplatin-induced apoptosis by promoting cell survival signaling. Carcinogenesis. 2008, 29: 1893-1900. 10.1093/carcin/bgn158PubMedCentralCrossRefPubMed Cao L, Petrusca DN, Satpathy M, Nakshatri H, Petrache I, Matei D: Tissue transglutaminase protects epithelial ovarian cancer cells from cisplatin-induced apoptosis by promoting cell survival signaling. Carcinogenesis. 2008, 29: 1893-1900. 10.1093/carcin/bgn158PubMedCentralCrossRefPubMed
7.
go back to reference Mehta K: High levels of transglutaminase expression in doxorubicin-resistant human breast carcinoma cells. International journal of cancer. 1994, 58: 400-406. 10.1002/ijc.2910580316. 10.1002/ijc.2910580316CrossRef Mehta K: High levels of transglutaminase expression in doxorubicin-resistant human breast carcinoma cells. International journal of cancer. 1994, 58: 400-406. 10.1002/ijc.2910580316. 10.1002/ijc.2910580316CrossRef
8.
go back to reference Mehta K, Fok J, Miller FR, Koul D, Sahin A: Prognostic significance of tissue transglutaminase in drug resistant and metastatic breast cancer. Clinical cancer research. 2004, 10: 8068-8076. 10.1158/1078-0432.CCR-04-1107CrossRefPubMed Mehta K, Fok J, Miller FR, Koul D, Sahin A: Prognostic significance of tissue transglutaminase in drug resistant and metastatic breast cancer. Clinical cancer research. 2004, 10: 8068-8076. 10.1158/1078-0432.CCR-04-1107CrossRefPubMed
9.
go back to reference Park KS, Kim HK, Lee JH, Choi YB, Park SY, Yang SH, Kim SY, Hong KM: Transglutaminase 2 as a cisplatin resistance marker in non-small cell lung cancer. J Cancer Res Clin Oncol. 2010, 136: 493-502. 10.1007/s00432-009-0681-6CrossRefPubMed Park KS, Kim HK, Lee JH, Choi YB, Park SY, Yang SH, Kim SY, Hong KM: Transglutaminase 2 as a cisplatin resistance marker in non-small cell lung cancer. J Cancer Res Clin Oncol. 2010, 136: 493-502. 10.1007/s00432-009-0681-6CrossRefPubMed
10.
go back to reference Antonyak MA, Li B, Regan AD, Feng Q, Dusaban SS, Cerione RA: Tissue transglutaminase is an essential participant in the epidermal growth factor-stimulated signaling pathway leading to cancer cell migration and invasion. J Biol Chem. 2009, 284: 17914-17925. 10.1074/jbc.M109.013037PubMedCentralCrossRefPubMed Antonyak MA, Li B, Regan AD, Feng Q, Dusaban SS, Cerione RA: Tissue transglutaminase is an essential participant in the epidermal growth factor-stimulated signaling pathway leading to cancer cell migration and invasion. J Biol Chem. 2009, 284: 17914-17925. 10.1074/jbc.M109.013037PubMedCentralCrossRefPubMed
11.
go back to reference Hwang JY, Mangala LS, Fok JY, Lin YG, Merritt WM, Spannuth WA, Nick AM, Fiterman DJ, Vivas-Mejia PE, Deavers MT: Clinical and biological significance of tissue transglutaminase in ovarian carcinoma. Cancer Res. 2008, 68: 5849-5858. 10.1158/0008-5472.CAN-07-6130PubMedCentralCrossRefPubMed Hwang JY, Mangala LS, Fok JY, Lin YG, Merritt WM, Spannuth WA, Nick AM, Fiterman DJ, Vivas-Mejia PE, Deavers MT: Clinical and biological significance of tissue transglutaminase in ovarian carcinoma. Cancer Res. 2008, 68: 5849-5858. 10.1158/0008-5472.CAN-07-6130PubMedCentralCrossRefPubMed
12.
go back to reference Mangala LS, Fok JY, Zorrilla-Calancha IR, Verma A, Mehta K: Tissue transglutaminase expression promotes cell attachment, invasion and survival in breast cancer cells. Oncogene. 2007, 26: 2459-2470. 10.1038/sj.onc.1210035CrossRefPubMed Mangala LS, Fok JY, Zorrilla-Calancha IR, Verma A, Mehta K: Tissue transglutaminase expression promotes cell attachment, invasion and survival in breast cancer cells. Oncogene. 2007, 26: 2459-2470. 10.1038/sj.onc.1210035CrossRefPubMed
13.
go back to reference Satpathy M, Cao L, Pincheira R, Emerson R, Bigsby R, Nakshatri H, Matei D: Enhanced peritoneal ovarian tumor dissemination by tissue transglutaminase. Cancer Res. 2007, 67: 7194-7202. 10.1158/0008-5472.CAN-07-0307CrossRefPubMed Satpathy M, Cao L, Pincheira R, Emerson R, Bigsby R, Nakshatri H, Matei D: Enhanced peritoneal ovarian tumor dissemination by tissue transglutaminase. Cancer Res. 2007, 67: 7194-7202. 10.1158/0008-5472.CAN-07-0307CrossRefPubMed
14.
go back to reference Chen SH, Lin CY, Lee LT, Chang GD, Lee PP, Hung CC, Kao WT, Tsai PH, Schally AV, Hwang JJ, Lee MT: Up-regulation of fibronectin and tissue transglutaminase promotes cell invasion involving increased association with integrin and MMP expression in A431 cells. Anticancer Res. 30: 4177-4186. Chen SH, Lin CY, Lee LT, Chang GD, Lee PP, Hung CC, Kao WT, Tsai PH, Schally AV, Hwang JJ, Lee MT: Up-regulation of fibronectin and tissue transglutaminase promotes cell invasion involving increased association with integrin and MMP expression in A431 cells. Anticancer Res. 30: 4177-4186.
15.
go back to reference Loo PS, Thomas SC, Nicolson MC, Fyfe MN, Kerr KM: Subtyping of undifferentiated non-small cell carcinomas in bronchial biopsy specimens. J Thorac Oncol. 2010, 5: 442-447. 10.1097/JTO.0b013e3181d40facCrossRefPubMed Loo PS, Thomas SC, Nicolson MC, Fyfe MN, Kerr KM: Subtyping of undifferentiated non-small cell carcinomas in bronchial biopsy specimens. J Thorac Oncol. 2010, 5: 442-447. 10.1097/JTO.0b013e3181d40facCrossRefPubMed
16.
go back to reference Jeong JM, Murthy SN, Radek JT, Lorand L: The fibronectin-binding domain of transglutaminase. J Biol Chem. 1995, 270: 5654-5658. 10.1074/jbc.270.10.5654CrossRefPubMed Jeong JM, Murthy SN, Radek JT, Lorand L: The fibronectin-binding domain of transglutaminase. J Biol Chem. 1995, 270: 5654-5658. 10.1074/jbc.270.10.5654CrossRefPubMed
17.
go back to reference Hang J, Zemskov EA, Lorand L, Belkin AM: Identification of a novel recognition sequence for fibronectin within the NH2-terminal beta-sandwich domain of tissue transglutaminase. J Biol Chem. 2005, 280: 23675-23683. 10.1074/jbc.M503323200CrossRefPubMed Hang J, Zemskov EA, Lorand L, Belkin AM: Identification of a novel recognition sequence for fibronectin within the NH2-terminal beta-sandwich domain of tissue transglutaminase. J Biol Chem. 2005, 280: 23675-23683. 10.1074/jbc.M503323200CrossRefPubMed
18.
go back to reference Janiak A, Zemskov EA, Belkin AM: Cell surface transglutaminase promotes RhoA activation via integrin clustering and suppression of the Src-p190RhoGAP signaling pathway. Mol Biol Cell. 2006, 17: 1606-1619. 10.1091/mbc.E05-06-0549PubMedCentralCrossRefPubMed Janiak A, Zemskov EA, Belkin AM: Cell surface transglutaminase promotes RhoA activation via integrin clustering and suppression of the Src-p190RhoGAP signaling pathway. Mol Biol Cell. 2006, 17: 1606-1619. 10.1091/mbc.E05-06-0549PubMedCentralCrossRefPubMed
19.
go back to reference Lipscomb EA, Mercurio AM: Mobilization and activation of a signaling competent alpha6beta4integrin underlies its contribution to carcinoma progression. Cancer Metastasis Rev. 2005, 24: 413-423. 10.1007/s10555-005-5133-4CrossRefPubMed Lipscomb EA, Mercurio AM: Mobilization and activation of a signaling competent alpha6beta4integrin underlies its contribution to carcinoma progression. Cancer Metastasis Rev. 2005, 24: 413-423. 10.1007/s10555-005-5133-4CrossRefPubMed
20.
go back to reference Kumar A, Xu J, Brady S, Gao H, Yu D, Reuben J, Mehta K: Tissue transglutaminase promotes drug resistance and invasion by inducing mesenchymal transition in mammary epithelial cells. PLoS One. 2010, 5: e13390- 10.1371/journal.pone.0013390PubMedCentralCrossRefPubMed Kumar A, Xu J, Brady S, Gao H, Yu D, Reuben J, Mehta K: Tissue transglutaminase promotes drug resistance and invasion by inducing mesenchymal transition in mammary epithelial cells. PLoS One. 2010, 5: e13390- 10.1371/journal.pone.0013390PubMedCentralCrossRefPubMed
21.
go back to reference Kim D, Park S, Nam B, Kim I, Kim S: Reversal of drug resistance in breast cancer cells by transglutaminase 2 inhibition and nuclear factor-kappaB inactivation. Cancer research. 2006, 66: 10936-10943. 10.1158/0008-5472.CAN-06-1521CrossRefPubMed Kim D, Park S, Nam B, Kim I, Kim S: Reversal of drug resistance in breast cancer cells by transglutaminase 2 inhibition and nuclear factor-kappaB inactivation. Cancer research. 2006, 66: 10936-10943. 10.1158/0008-5472.CAN-06-1521CrossRefPubMed
22.
go back to reference Mann AP, Verma A, Sethi G, Manavathi B, Wang H, Fok JY, Kunnumakkara AB, Kumar R, Aggarwal B, Mehta K: Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-kappaB in cancer cells: delineation of a novel pathway. Cancer research. 2006, 66: 8788-8795. 10.1158/0008-5472.CAN-06-1457CrossRefPubMed Mann AP, Verma A, Sethi G, Manavathi B, Wang H, Fok JY, Kunnumakkara AB, Kumar R, Aggarwal B, Mehta K: Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-kappaB in cancer cells: delineation of a novel pathway. Cancer research. 2006, 66: 8788-8795. 10.1158/0008-5472.CAN-06-1457CrossRefPubMed
Metadata
Title
Transglutaminase 2 as an independent prognostic marker for survival of patients with non-adenocarcinoma subtype of non-small cell lung cancer
Authors
Chang-Min Choi
Se-Jin Jang
Seong-Yeol Park
Yong-Bock Choi
Jae-Heon Jeong
Dae-Seok Kim
Hyun-Kyoung Kim
Kang-Seo Park
Byung-Ho Nam
Hyeong-Ryul Kim
Soo-Youl Kim
Kyeong-Man Hong
Korean Thoracic Oncology Research Group (KTORG)
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2011
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-10-119

Other articles of this Issue 1/2011

Molecular Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine