Skip to main content
Top
Published in: Tumor Biology 1/2016

01-01-2016 | Original Article

Transforming growth factor-β signaling pathway cross-talking with ERα signaling pathway on regulating the growth of uterine leiomyoma activated by phenolic environmental estrogens in vitro

Authors: Yang Shen, Yanting Wu, Qing Lu, Peili Zhang, Mulan Ren

Published in: Tumor Biology | Issue 1/2016

Login to get access

Abstract

The aim of this paper is to study the participation of transforming growth factor-β (TGF-β) signaling pathway in mediating the growth of human uterine leiomyoma (UL) activated by phenolic environmental estrogens (EEs), via the interaction between TGF-β and ER signaling pathways. The UL cells were prepared by primary culture and subculture methods. To validate the role of TGF-β3 (5 ng/ml) for the viability of human uterine leiomyoma cells, CCK-8 assay was performed in each of five treatment groups including E2 group (E2 109 mol/l), BPA group (bisphenol A 10 μmol/l), NP group (nonylphenol 32 μmol/l), OP group (octylphenol 8 μmol/l), or control group (DMSO only). Subsequently, qRT-PCR was applied to detect mRNA expressions of ERα and c-fos, while western blot assay was used to test the expressions of p-Smad3, SnoN, and c-fos proteins in all settings mentioned above; the expressions were compared among different groups, and also in settings with and without synchronous treatment of ICI 182,780. Primarily cultured UL cells were successfully established. Compared with the control group, there were statistically significant increases in the proliferation rate of the UL cells in all EE groups or treated with TGF-β3 only (p < 0.05). Nevertheless, a slight decrease in proliferation rate of UL was detected in coexistence with TGF-β3 in all EE groups (p > 0.05). Interestingly, mRNA expressions of ERα and c-fos reduced in the setting of coexistence of TGF-β3 and EEs compared to isolated EE treatment (p < 0.05). Compared with the control group, the expression of p-Smad3 and c-fos proteins significantly decreased (p < 0.05) in each of E2, BPA, NP, and OP group, and the expression of SnoN protein also significantly reduced only in BPA and NP groups (p < 0.05), followed by TGF-β3 treatment. When adding ICI 182,780, the expression of p-Smad3 protein significantly increased in OP group (p < 0.05), but slightly increased in E2, BPA, NP, and OP groups (p > 0.05). However, compared with the control group, the expressions of SnoN and c-fos proteins significantly decreased (p < 0.05) after adding ICI182,780. Moreover, there was a significant statistical difference in the expression of p-Smad3, SnoN, and c-fos proteins between pre- and post-treatment of ICI 182,780 in all groups (p < 0.05). The ERα signaling pathway and TGF-β signaling pathway have different roles in the control of UL cell proliferation. The phenolic EEs can be a promoter of UL cell proliferation, which is mediated by ERα signaling pathway and its cross-talking with TGF-β signaling pathway. Both less exposure to EEs and blockade of TGF signaling pathway are necessary strategies to prevent UL.
Literature
1.
go back to reference Levy G, Hill MJ, Beall S, et al. Leiomyoma: genetics, assisted reproduction, pregnancy and therapeutic advances. J Assist Reprod Genet. 2012;29(8):703–12.CrossRefPubMedPubMedCentral Levy G, Hill MJ, Beall S, et al. Leiomyoma: genetics, assisted reproduction, pregnancy and therapeutic advances. J Assist Reprod Genet. 2012;29(8):703–12.CrossRefPubMedPubMedCentral
2.
go back to reference Shen Y, Ren ML, Xu J, Xu Q, Ding YQ, Wu ZC, et al. A multicenter case-control study on screening of single nucleotide polymorphisms in estrogen-metabolizing enzymes and susceptibility to uterine leiomyoma in Han Chinese. Gynecol Obstet Invest. 2014;77(4):224–30.CrossRefPubMed Shen Y, Ren ML, Xu J, Xu Q, Ding YQ, Wu ZC, et al. A multicenter case-control study on screening of single nucleotide polymorphisms in estrogen-metabolizing enzymes and susceptibility to uterine leiomyoma in Han Chinese. Gynecol Obstet Invest. 2014;77(4):224–30.CrossRefPubMed
3.
go back to reference Shen Y, Xu Q, Xu J, Ren ML, Cai YL. Environmental exposure and risk of uterine leiomyoma: an epidemiologic survey. Eur Rev Med Pharmacol Sci. 2013;17(23):3249–56.PubMed Shen Y, Xu Q, Xu J, Ren ML, Cai YL. Environmental exposure and risk of uterine leiomyoma: an epidemiologic survey. Eur Rev Med Pharmacol Sci. 2013;17(23):3249–56.PubMed
4.
go back to reference Shen Y, Xu Q, Ren M, Feng X, Cai Y, Gao Y. Measurement of phenolic environmental estrogens in women with uterine leiomyoma. PLoS One. 2013;8(11), e79838.CrossRefPubMedPubMedCentral Shen Y, Xu Q, Ren M, Feng X, Cai Y, Gao Y. Measurement of phenolic environmental estrogens in women with uterine leiomyoma. PLoS One. 2013;8(11), e79838.CrossRefPubMedPubMedCentral
5.
go back to reference Shen Y, Ren ML, Feng X, Gao YX, Xu Q, Cai YL. Does nonylphenol promote the growth of uterine fibroids? Eur J Obstet Gynecol Reprod Biol. 2014;178:134–7.CrossRefPubMed Shen Y, Ren ML, Feng X, Gao YX, Xu Q, Cai YL. Does nonylphenol promote the growth of uterine fibroids? Eur J Obstet Gynecol Reprod Biol. 2014;178:134–7.CrossRefPubMed
6.
go back to reference Shen Y, Ren ML, Feng X, Cai YL, Gao YX, Xu Q. An evidence in vitro for the influence of bisphenol A on uterine leiomyoma. Eur J Obstet Gynecol Reprod Biol. 2014;178:80–3.CrossRefPubMed Shen Y, Ren ML, Feng X, Cai YL, Gao YX, Xu Q. An evidence in vitro for the influence of bisphenol A on uterine leiomyoma. Eur J Obstet Gynecol Reprod Biol. 2014;178:80–3.CrossRefPubMed
7.
go back to reference Chegini N. Proinflammatory and profibrotic mediators: principal effectors of leiomyoma development as a fibrotic disorder. Semin Reprod Med. 2010;28(3):180–203.CrossRefPubMedPubMedCentral Chegini N. Proinflammatory and profibrotic mediators: principal effectors of leiomyoma development as a fibrotic disorder. Semin Reprod Med. 2010;28(3):180–203.CrossRefPubMedPubMedCentral
8.
go back to reference Zhao Y, Wen Y, Polan ML, Qiao J, Chen BH. Increased expression of latent TGF-beta binding protein-1 and fibrillin-1 in human uterine leiomyomata. Mol Hum Reprod. 2007;13(5):343–9.CrossRefPubMed Zhao Y, Wen Y, Polan ML, Qiao J, Chen BH. Increased expression of latent TGF-beta binding protein-1 and fibrillin-1 in human uterine leiomyomata. Mol Hum Reprod. 2007;13(5):343–9.CrossRefPubMed
9.
go back to reference Norian JM, Malik M, Parker CY, Joseph D, Leppert PC, Segars JH, et al. Transforming growth factor beta3 regulates the versican variants in the extracellular matrix-rich uterine leiomyomas. Reprod Sci. 2009;16:1153–64.CrossRefPubMedPubMedCentral Norian JM, Malik M, Parker CY, Joseph D, Leppert PC, Segars JH, et al. Transforming growth factor beta3 regulates the versican variants in the extracellular matrix-rich uterine leiomyomas. Reprod Sci. 2009;16:1153–64.CrossRefPubMedPubMedCentral
10.
go back to reference Halder SK, Goodwin JS, Al-Hendy A. 1,25-Dihydroxyvitamin D3 reduces TGF-beta3-induced fibrosis-related gene expression in human uterine leiomyoma cells. J Clin Endocrinol Metab. 2011;96(4):E754–62.CrossRefPubMedPubMedCentral Halder SK, Goodwin JS, Al-Hendy A. 1,25-Dihydroxyvitamin D3 reduces TGF-beta3-induced fibrosis-related gene expression in human uterine leiomyoma cells. J Clin Endocrinol Metab. 2011;96(4):E754–62.CrossRefPubMedPubMedCentral
11.
go back to reference Ewan KB, Oketch-Rabah HA, Ravani SA, Shyamala G, Moses HL, Barcellos-Hoff MH. Proliferation of estrogen receptor-alpha-positive mammary epithelial cells is restrained by transforming growth factor-beta1 in adult mice. Am J Pathol. 2005;167(2):409–17.CrossRefPubMedPubMedCentral Ewan KB, Oketch-Rabah HA, Ravani SA, Shyamala G, Moses HL, Barcellos-Hoff MH. Proliferation of estrogen receptor-alpha-positive mammary epithelial cells is restrained by transforming growth factor-beta1 in adult mice. Am J Pathol. 2005;167(2):409–17.CrossRefPubMedPubMedCentral
12.
go back to reference Figueroa JD, Flanders KC, Garcia-Closas M, Anderson WF, Yang XR, Matsuno RK, et al. Expression of TGF-beta signaling factors in invasive breast cancers: relationships with age at diagnosis and tumor characteristics. Breast Cancer Res Treat. 2010;121(3):727–35.CrossRefPubMed Figueroa JD, Flanders KC, Garcia-Closas M, Anderson WF, Yang XR, Matsuno RK, et al. Expression of TGF-beta signaling factors in invasive breast cancers: relationships with age at diagnosis and tumor characteristics. Breast Cancer Res Treat. 2010;121(3):727–35.CrossRefPubMed
13.
go back to reference Wang J, Ohara N, Takekida S, et al. Comparative effects of heparin-binding epidermal growth factor-like growth factor on the growth of cultured human uterine leiomyoma cells and myometrial cells. Hum Reprod. 2005;20(6):1456–65.CrossRefPubMed Wang J, Ohara N, Takekida S, et al. Comparative effects of heparin-binding epidermal growth factor-like growth factor on the growth of cultured human uterine leiomyoma cells and myometrial cells. Hum Reprod. 2005;20(6):1456–65.CrossRefPubMed
14.
go back to reference Skor MN, Wonder EL, Kocherginsky M, Goyal A, Hall BA, Cai Y, et al. Glucocorticoid receptor antagonism as a novel therapy for triple-negative breast cancer. Clin Cancer Res. 2013;19(22):6163–72.CrossRefPubMed Skor MN, Wonder EL, Kocherginsky M, Goyal A, Hall BA, Cai Y, et al. Glucocorticoid receptor antagonism as a novel therapy for triple-negative breast cancer. Clin Cancer Res. 2013;19(22):6163–72.CrossRefPubMed
15.
go back to reference Stark K, Burger A, Wu J, Shelton P, Polin L, Li J. Reactivation of estrogen receptor a by vorinostat sensitizes mesenchymal-like triple-negative breast cancer to aminoflavone, a ligand of the aryl hydrocarbon receptor. PLoS One. 2013;8(9), e74525.CrossRefPubMedPubMedCentral Stark K, Burger A, Wu J, Shelton P, Polin L, Li J. Reactivation of estrogen receptor a by vorinostat sensitizes mesenchymal-like triple-negative breast cancer to aminoflavone, a ligand of the aryl hydrocarbon receptor. PLoS One. 2013;8(9), e74525.CrossRefPubMedPubMedCentral
16.
go back to reference Islam MS, Protic O, Giannubilo SR, Toti P, Tranquilli AL, Petraglia F, et al. Uterine leiomyoma: available medical treatments and new possible therapeutic options. J Clin Endocrinol Metab. 2013;98(3):921–34.CrossRefPubMed Islam MS, Protic O, Giannubilo SR, Toti P, Tranquilli AL, Petraglia F, et al. Uterine leiomyoma: available medical treatments and new possible therapeutic options. J Clin Endocrinol Metab. 2013;98(3):921–34.CrossRefPubMed
17.
go back to reference Maruo T, Ohara N, Wang J, Matsuo H. Sex steroidal regulation of uterine leiomyoma growth and apoptosis. Hum Reprod Update. 2004;10(3):207–20.CrossRefPubMed Maruo T, Ohara N, Wang J, Matsuo H. Sex steroidal regulation of uterine leiomyoma growth and apoptosis. Hum Reprod Update. 2004;10(3):207–20.CrossRefPubMed
18.
go back to reference Ishikawa H, Ishi K, Serna VA, Kakazu R, Bulun SE, Kurita T. Progesterone is essential for maintenance and growth of uterine leiomyoma. Endocrinology. 2010;151(6):2433–42.CrossRefPubMedPubMedCentral Ishikawa H, Ishi K, Serna VA, Kakazu R, Bulun SE, Kurita T. Progesterone is essential for maintenance and growth of uterine leiomyoma. Endocrinology. 2010;151(6):2433–42.CrossRefPubMedPubMedCentral
19.
go back to reference Zhou F, Zhang L, Liu A, Shen Y, Yuan J, Yu X, et al. Measurement of phenolic environmental estrogens in human urine samples by HPLC-MS/MS and primary discussion the possible linkage with uterine leiomyoma. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;938:80–5.CrossRefPubMed Zhou F, Zhang L, Liu A, Shen Y, Yuan J, Yu X, et al. Measurement of phenolic environmental estrogens in human urine samples by HPLC-MS/MS and primary discussion the possible linkage with uterine leiomyoma. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;938:80–5.CrossRefPubMed
20.
go back to reference Di X, Andrews DM, Tucker CJ, Yu L, Moore AB, Zheng X, et al. A high concentration of genistein down-regulates activin A, Smad3 and other TGF-β pathway genes in human uterine leiomyoma cells. Exp Mol Med. 2012;44(4):281–92.CrossRefPubMedPubMedCentral Di X, Andrews DM, Tucker CJ, Yu L, Moore AB, Zheng X, et al. A high concentration of genistein down-regulates activin A, Smad3 and other TGF-β pathway genes in human uterine leiomyoma cells. Exp Mol Med. 2012;44(4):281–92.CrossRefPubMedPubMedCentral
21.
go back to reference Lee BS, Nowak RA. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-beta 3 (TGF beta 3) and altered responses to the antiproliferative effects of TGF beta. J Clin Endocrinol Metab. 2001;86(2):913–20.PubMed Lee BS, Nowak RA. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-beta 3 (TGF beta 3) and altered responses to the antiproliferative effects of TGF beta. J Clin Endocrinol Metab. 2001;86(2):913–20.PubMed
22.
go back to reference Arici A, Sozen I. Transforming growth factor-beta3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. Fertil Steril. 2000;73(5):1006–11.CrossRefPubMed Arici A, Sozen I. Transforming growth factor-beta3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. Fertil Steril. 2000;73(5):1006–11.CrossRefPubMed
23.
go back to reference Borahay MA, Al-Hendy A, Kilic GS, Boehning D. Signaling pathways in leiomyoma: understanding pathobiology and implications for therapy. Mol Med. 2015 Apr 13. [Epub ahead of print]. Borahay MA, Al-Hendy A, Kilic GS, Boehning D. Signaling pathways in leiomyoma: understanding pathobiology and implications for therapy. Mol Med. 2015 Apr 13. [Epub ahead of print].
24.
go back to reference Zhou Z, Qiao JX, Shetty A, Wu G, Huang Y, Davidson NE, et al. Regulation of estrogen receptor signaling in breast carcinogenesis and breast cancer therapy. Cell Mol Life Sci. 2014;71(8):1549.CrossRefPubMed Zhou Z, Qiao JX, Shetty A, Wu G, Huang Y, Davidson NE, et al. Regulation of estrogen receptor signaling in breast carcinogenesis and breast cancer therapy. Cell Mol Life Sci. 2014;71(8):1549.CrossRefPubMed
25.
go back to reference Chegini N, Luo X, Ding L, Ripley D. The expression of Smads and transforming growth factor beta receptors in leiomyoma and myometrium and the effect of gonadotropin releasing hormone analogue therapy. Mol Cell Endocrinol. 2003;209(1-2):9–16.CrossRefPubMed Chegini N, Luo X, Ding L, Ripley D. The expression of Smads and transforming growth factor beta receptors in leiomyoma and myometrium and the effect of gonadotropin releasing hormone analogue therapy. Mol Cell Endocrinol. 2003;209(1-2):9–16.CrossRefPubMed
26.
go back to reference Salama SA, Diaz-Arrastia CR, Kilic GS, Kamel MW. 2-Methoxyestradiol causes functional repression of transforming growth factor β3 signaling by ameliorating Smad and non-Smad signaling pathways in immortalized uterine fibroid cells. Fertil Steril. 2012;98(1):178–84.CrossRefPubMed Salama SA, Diaz-Arrastia CR, Kilic GS, Kamel MW. 2-Methoxyestradiol causes functional repression of transforming growth factor β3 signaling by ameliorating Smad and non-Smad signaling pathways in immortalized uterine fibroid cells. Fertil Steril. 2012;98(1):178–84.CrossRefPubMed
27.
go back to reference Tulchinsky E. Fos family members: regulation, structure and role in oncogenic transformation. Histol Histopathol. 2000;15(3):921–8.PubMed Tulchinsky E. Fos family members: regulation, structure and role in oncogenic transformation. Histol Histopathol. 2000;15(3):921–8.PubMed
28.
go back to reference Band AM, Laiho M. Crosstalk of TGF-β and estrogen receptor signaling in breast cancer. J Mammary Gland Biol Neoplasia. 2011;16(2):109–15.CrossRefPubMed Band AM, Laiho M. Crosstalk of TGF-β and estrogen receptor signaling in breast cancer. J Mammary Gland Biol Neoplasia. 2011;16(2):109–15.CrossRefPubMed
29.
go back to reference Goto N, Hiyoshi H, Ito I, Tsuchiya M, Nakajima Y, Yanagisawa J. Estrogen and antiestrogens alter breast cancer invasiveness by modulating the transforming growth factor-β signaling pathway. Cancer Sci. 2011;102(8):1501–8.CrossRefPubMed Goto N, Hiyoshi H, Ito I, Tsuchiya M, Nakajima Y, Yanagisawa J. Estrogen and antiestrogens alter breast cancer invasiveness by modulating the transforming growth factor-β signaling pathway. Cancer Sci. 2011;102(8):1501–8.CrossRefPubMed
Metadata
Title
Transforming growth factor-β signaling pathway cross-talking with ERα signaling pathway on regulating the growth of uterine leiomyoma activated by phenolic environmental estrogens in vitro
Authors
Yang Shen
Yanting Wu
Qing Lu
Peili Zhang
Mulan Ren
Publication date
01-01-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 1/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3813-4

Other articles of this Issue 1/2016

Tumor Biology 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine