Skip to main content
Top
Published in: Breast Cancer Research 2/2000

01-04-2000 | Review

Transforming growth factor-β and breast cancer: Transforming growth factor-β/SMAD signaling defects and cancer

Author: Marcus Kretzschmar

Published in: Breast Cancer Research | Issue 2/2000

Login to get access

Abstract

Transforming growth factor-β (TGF-β) is a tumor suppressor, the function of which is compromised in many types of human cancer, including breast cancer. The tumor suppressive effects of TGF-β are caused by potent inhibition of cell proliferation due to cell cycle arrest in the G1 phase. Such antiproliferative responses are mediated by a signaling system that includes two types of cell surface receptors and intracellular signal transducers, the SMAD proteins. Different molecular mechanisms can lead to loss of antiproliferative TGF-β responses in tumor cells, including mutations in components of the signaling system and inhibition of the SMAD signaling pathway by aberrant activities of various regulatory molecules. Some of these mechanisms will be discussed, with emphasis on their potential involvement in breast tumorigenesis.
Literature
1.
go back to reference Massagué J: TGFβ signal transduction. Annu Rev Biochem. 1998, 67: 753-791. 10.1146/annurev.biochem.67.1.753.PubMedCrossRef Massagué J: TGFβ signal transduction. Annu Rev Biochem. 1998, 67: 753-791. 10.1146/annurev.biochem.67.1.753.PubMedCrossRef
2.
go back to reference Arteaga CL, Dugger TC, Hurd SD: The multifunctional role of transforming growth factor (TGF)-βs on mammary epithelial cell biology. Breast Cancer Res Treat. 1996, 38: 49-56.PubMedCrossRef Arteaga CL, Dugger TC, Hurd SD: The multifunctional role of transforming growth factor (TGF)-βs on mammary epithelial cell biology. Breast Cancer Res Treat. 1996, 38: 49-56.PubMedCrossRef
3.
go back to reference Reiss M, Barcellos-Hoff MH: Transforming growth factor-β in breast cancer: a working hypothesis. Breast Cancer Res Treat. 1997, 45: 81-95. 10.1023/A:1005865812918.PubMedCrossRef Reiss M, Barcellos-Hoff MH: Transforming growth factor-β in breast cancer: a working hypothesis. Breast Cancer Res Treat. 1997, 45: 81-95. 10.1023/A:1005865812918.PubMedCrossRef
4.
go back to reference Pierce DFJ, Gorska AE, Chytil A, et al: Mammary tumor suppression by transforming growth factor beta 1 transgene expression. Proc Natl Acad Sci USA. 1995, 92: 4254-4258.PubMedPubMedCentralCrossRef Pierce DFJ, Gorska AE, Chytil A, et al: Mammary tumor suppression by transforming growth factor beta 1 transgene expression. Proc Natl Acad Sci USA. 1995, 92: 4254-4258.PubMedPubMedCentralCrossRef
5.
go back to reference Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E: TGF-β1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev. 1996, 10: 2462-2477.PubMedCrossRef Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E: TGF-β1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev. 1996, 10: 2462-2477.PubMedCrossRef
6.
go back to reference Welch DR, Fabra A, Nakajima M: Transforming growth factor β stimulates mammary adenocarcinoma cell invasion and metastatic potential. Proc Natl Acad Sci USA. 1990, 87: 7678-7682.PubMedPubMedCentralCrossRef Welch DR, Fabra A, Nakajima M: Transforming growth factor β stimulates mammary adenocarcinoma cell invasion and metastatic potential. Proc Natl Acad Sci USA. 1990, 87: 7678-7682.PubMedPubMedCentralCrossRef
7.
go back to reference Yin JJ, Selander K, Chirgwin JM, et al: TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest. 1999, 103: 197-206.PubMedPubMedCentralCrossRef Yin JJ, Selander K, Chirgwin JM, et al: TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest. 1999, 103: 197-206.PubMedPubMedCentralCrossRef
8.
go back to reference Oft M, Heider KH, Beug H: TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol. 1998, 8: 1243-1252. 10.1016/S0960-9822(07)00533-7.PubMedCrossRef Oft M, Heider KH, Beug H: TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol. 1998, 8: 1243-1252. 10.1016/S0960-9822(07)00533-7.PubMedCrossRef
9.
go back to reference Fynan TM, Reiss M: Resistance to inhibition of cell growth by transforming growth factor-β and its role in oncogenesis. Crit Rev Oncog. 1993, 4: 493-540.PubMed Fynan TM, Reiss M: Resistance to inhibition of cell growth by transforming growth factor-β and its role in oncogenesis. Crit Rev Oncog. 1993, 4: 493-540.PubMed
10.
go back to reference Alexandrow MG, Moses HL: Transforming growth factor β and cell cycle regulation. Cancer Res. 1995, 55: 1452-1457.PubMed Alexandrow MG, Moses HL: Transforming growth factor β and cell cycle regulation. Cancer Res. 1995, 55: 1452-1457.PubMed
11.
go back to reference Kretzschmar M, Massagué J: SMADs: mediators and regulators of TGFβ family signalling. Curr Opin Genet Dev. 1998, 8: 103-111. 10.1016/S0959-437X(98)80069-5.PubMedCrossRef Kretzschmar M, Massagué J: SMADs: mediators and regulators of TGFβ family signalling. Curr Opin Genet Dev. 1998, 8: 103-111. 10.1016/S0959-437X(98)80069-5.PubMedCrossRef
12.
go back to reference Derynck R, Zhang Y, Feng XH: Smads: transcriptional activators of TGF-β responses. Cell. 1998, 95: 737-740.PubMedCrossRef Derynck R, Zhang Y, Feng XH: Smads: transcriptional activators of TGF-β responses. Cell. 1998, 95: 737-740.PubMedCrossRef
13.
go back to reference Markowitz S, Wang J, Myeroff L, et al: Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science. 1995, 268: 1336-1338. This study identifies mutations clustered within small repeated sequences in the type II TGF-β receptor gene in colon cancers with DNA repair defects, thereby linking DNA repair defects with the escape from TGF-β-mediated cell growth control in this type of cancer.PubMedCrossRef Markowitz S, Wang J, Myeroff L, et al: Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science. 1995, 268: 1336-1338. This study identifies mutations clustered within small repeated sequences in the type II TGF-β receptor gene in colon cancers with DNA repair defects, thereby linking DNA repair defects with the escape from TGF-β-mediated cell growth control in this type of cancer.PubMedCrossRef
14.
go back to reference Myeroff LL, Parsons R, Kim S-J, et al: A transforming growth factor β receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res. 1995, 55: 5545-5547.PubMed Myeroff LL, Parsons R, Kim S-J, et al: A transforming growth factor β receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res. 1995, 55: 5545-5547.PubMed
15.
go back to reference Parsons R, Myeroff LL, Liu B, et al: Microsatellite instability and mutations of the transforming growth factor β type II receptor gene in colorectal cancer. Cancer Res. 1995, 55: 5548-5550.PubMed Parsons R, Myeroff LL, Liu B, et al: Microsatellite instability and mutations of the transforming growth factor β type II receptor gene in colorectal cancer. Cancer Res. 1995, 55: 5548-5550.PubMed
16.
go back to reference Grady WM, Myeroff LL, Swinler SE, et al: Mutational inactivation of transforming growth factor β receptor type II in microsatellite stable colon cancers. Cancer Res. 1999, 59: 320-324.PubMed Grady WM, Myeroff LL, Swinler SE, et al: Mutational inactivation of transforming growth factor β receptor type II in microsatellite stable colon cancers. Cancer Res. 1999, 59: 320-324.PubMed
17.
go back to reference D'Abronzo FH, Swearingen B, Klibanski A, Alexander JM: Mutational analysis of activin/transforming growth factor-β type I and type II receptor kinases in human pituitary tumors. J Clin Endocrinol Metab. 1999, 84: 1716-1721. 10.1210/jc.84.5.1716.PubMedCrossRef D'Abronzo FH, Swearingen B, Klibanski A, Alexander JM: Mutational analysis of activin/transforming growth factor-β type I and type II receptor kinases in human pituitary tumors. J Clin Endocrinol Metab. 1999, 84: 1716-1721. 10.1210/jc.84.5.1716.PubMedCrossRef
18.
go back to reference Kaneko H, Horiike S, Taniwaki M, Misawa S: Microsatellite instability is an early genetic event in myelodysplastic syndrome but is infrequent and not associated with TGF-β receptor type II gene mutation. Leukemia. 1996, 10: 1696-1699.PubMed Kaneko H, Horiike S, Taniwaki M, Misawa S: Microsatellite instability is an early genetic event in myelodysplastic syndrome but is infrequent and not associated with TGF-β receptor type II gene mutation. Leukemia. 1996, 10: 1696-1699.PubMed
19.
go back to reference Venkatasubbarao K, Ahmed MM, Swiderski C, et al: Novel mutations in the polyadenine tract of the transforming growth factor β type II receptor gene are found in a subpopulation of human pancreatic adenocarcinomas. Genes Chromosomes Cancer. 1998, 22: 138-144. 10.1002/(SICI)1098-2264(199806)22:2<138::AID-GCC8>3.0.CO;2-Y.PubMedCrossRef Venkatasubbarao K, Ahmed MM, Swiderski C, et al: Novel mutations in the polyadenine tract of the transforming growth factor β type II receptor gene are found in a subpopulation of human pancreatic adenocarcinomas. Genes Chromosomes Cancer. 1998, 22: 138-144. 10.1002/(SICI)1098-2264(199806)22:2<138::AID-GCC8>3.0.CO;2-Y.PubMedCrossRef
20.
go back to reference Vincent F, Hagiwara K, Ke Y, Stoner GD, Demetrick DJ, Bennett WP: Mutation analysis of the transforming growth factor β type II receptor in sporadic human cancers of the pancreas, liver, and breast. Biochem Biophys Res Commun. 1996, 223: 561-564. 10.1006/bbrc.1996.0934.PubMedCrossRef Vincent F, Hagiwara K, Ke Y, Stoner GD, Demetrick DJ, Bennett WP: Mutation analysis of the transforming growth factor β type II receptor in sporadic human cancers of the pancreas, liver, and breast. Biochem Biophys Res Commun. 1996, 223: 561-564. 10.1006/bbrc.1996.0934.PubMedCrossRef
21.
go back to reference Chen T, Carter D, Garrigue-Antar L, Reiss M: Transforming growth factor β type I receptor kinase mutant associated with metastatic breast cancer. Cancer Res. 1998, 58: 4805-4810. This is the first report of mutations in TβR-I in human cancer. The predominance of the mutation in lymph node metastases suggests an importance for breast cancer progression.PubMed Chen T, Carter D, Garrigue-Antar L, Reiss M: Transforming growth factor β type I receptor kinase mutant associated with metastatic breast cancer. Cancer Res. 1998, 58: 4805-4810. This is the first report of mutations in TβR-I in human cancer. The predominance of the mutation in lymph node metastases suggests an importance for breast cancer progression.PubMed
22.
go back to reference Takenoshita S, Mogi A, Tani M, et al: Absence of mutations in the analysis of coding sequences of the entire transforming growth factor-β type II receptor gene in sporadic human breast cancers. Oncol Rep. 1998, 5: 367-371.PubMed Takenoshita S, Mogi A, Tani M, et al: Absence of mutations in the analysis of coding sequences of the entire transforming growth factor-β type II receptor gene in sporadic human breast cancers. Oncol Rep. 1998, 5: 367-371.PubMed
23.
go back to reference Tomita S, Deguchi S, Miyaguni T, Muto Y, Tamamoto T, Toda T: Analyses of microsatellite instability and the transforming growth factor-β receptor type II gene mutation in sporadic breast cancer and their correlation with clinicopathological features. Breast Cancer Res Treat. 1999, 53: 33-39. 10.1023/A:1006167210269.PubMedCrossRef Tomita S, Deguchi S, Miyaguni T, Muto Y, Tamamoto T, Toda T: Analyses of microsatellite instability and the transforming growth factor-β receptor type II gene mutation in sporadic breast cancer and their correlation with clinicopathological features. Breast Cancer Res Treat. 1999, 53: 33-39. 10.1023/A:1006167210269.PubMedCrossRef
24.
go back to reference Vincent F, Nagashima M, Takenoshita S, et al: Mutation analysis of the transforming growth factor-β type II receptor in human cell lines resistant to growth inhibition by transforming growth factor-β. Oncogene. 1997, 15: 117-122. 10.1038/sj.onc.1201166.PubMedCrossRef Vincent F, Nagashima M, Takenoshita S, et al: Mutation analysis of the transforming growth factor-β type II receptor in human cell lines resistant to growth inhibition by transforming growth factor-β. Oncogene. 1997, 15: 117-122. 10.1038/sj.onc.1201166.PubMedCrossRef
25.
go back to reference Markowitz SD, Roberts AB: Tumor suppressor activity of the TGF-β pathway in human cancers. Cytokine Growth Factor Rev. 1996, 7: 93-102. 10.1016/1359-6101(96)00001-9.PubMedCrossRef Markowitz SD, Roberts AB: Tumor suppressor activity of the TGF-β pathway in human cancers. Cytokine Growth Factor Rev. 1996, 7: 93-102. 10.1016/1359-6101(96)00001-9.PubMedCrossRef
26.
go back to reference Goggins M, Shekher M, Turnacioglu K, Yeo CJ, Hruban RH, Kern SE: Genetic alterations of the transforming growth factor β receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res. 1998, 58: 5329-5332.PubMed Goggins M, Shekher M, Turnacioglu K, Yeo CJ, Hruban RH, Kern SE: Genetic alterations of the transforming growth factor β receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res. 1998, 58: 5329-5332.PubMed
27.
go back to reference Schiemann WP, Pfeifer WM, Levi E, Kadin ME, Lodish HF: A deletion in the gene for transforming growth factor β type I receptor abolishes growth regulation by transforming growth factor β in a cutaneous T-cell lymphoma. Blood. 1999, 94: 2854-2861.PubMed Schiemann WP, Pfeifer WM, Levi E, Kadin ME, Lodish HF: A deletion in the gene for transforming growth factor β type I receptor abolishes growth regulation by transforming growth factor β in a cutaneous T-cell lymphoma. Blood. 1999, 94: 2854-2861.PubMed
28.
go back to reference Chen T, de Vries EG, Hollema H, et al: Structural alterations of transforming growth factor-β receptor genes in human cervical carcinoma. Int J Cancer. 1999, 82: 43-51. 10.1002/(SICI)1097-0215(19990702)82:1<43::AID-IJC9>3.0.CO;2-0.PubMedCrossRef Chen T, de Vries EG, Hollema H, et al: Structural alterations of transforming growth factor-β receptor genes in human cervical carcinoma. Int J Cancer. 1999, 82: 43-51. 10.1002/(SICI)1097-0215(19990702)82:1<43::AID-IJC9>3.0.CO;2-0.PubMedCrossRef
29.
go back to reference Pasche B, Kolachana P, Nafa K, et al: TβR-I(6A) is a candidate tumor susceptibility allele. Cancer Res. 1999, 59: 5678-5682.PubMed Pasche B, Kolachana P, Nafa K, et al: TβR-I(6A) is a candidate tumor susceptibility allele. Cancer Res. 1999, 59: 5678-5682.PubMed
30.
go back to reference Anbazhagan R, Bornman DM, Johnston JC, Westra WH, Gabrielson E: The S387Y mutations of the transforming growth factor-β receptor type I gene is uncommon in metastases of breast cancer and other common types of adenocarcinoma. Cancer Res. 1999, 59: 3363-3364. This study failed to identify the mutation reported in [21•] in breast cancer metastases and other forms of adenocarcinomas. The importance of such a mutation for breast or other cancers is therefore questioned.PubMed Anbazhagan R, Bornman DM, Johnston JC, Westra WH, Gabrielson E: The S387Y mutations of the transforming growth factor-β receptor type I gene is uncommon in metastases of breast cancer and other common types of adenocarcinoma. Cancer Res. 1999, 59: 3363-3364. This study failed to identify the mutation reported in [21•] in breast cancer metastases and other forms of adenocarcinomas. The importance of such a mutation for breast or other cancers is therefore questioned.PubMed
31.
go back to reference Hahn SA, Schutte M, Hoque ATMS, et al: DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996, 271: 350-353. This study identifies Smad4/DPC4 as a candidate tumor suppressor that is inactivated in a large percentage of pancreatic carcinomas, and possibly also in other human cancers.PubMedCrossRef Hahn SA, Schutte M, Hoque ATMS, et al: DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996, 271: 350-353. This study identifies Smad4/DPC4 as a candidate tumor suppressor that is inactivated in a large percentage of pancreatic carcinomas, and possibly also in other human cancers.PubMedCrossRef
32.
go back to reference Barrett MT, Schutte M, Kern SE, Reid BJ: Allelic loss and mutational analysis of the DPC4 gene in esophageal adenocarcinoma. Cancer Res. 1996, 56: 4351-4353.PubMed Barrett MT, Schutte M, Kern SE, Reid BJ: Allelic loss and mutational analysis of the DPC4 gene in esophageal adenocarcinoma. Cancer Res. 1996, 56: 4351-4353.PubMed
33.
go back to reference Kim SK, Fan Y, Papadimitrakopoulou V, et al: DPC4, a candidate tumor suppressor gene, is altered infrequently in head and neck squamous cell carcinoma. Cancer Res. 1996, 56: 2519-2521.PubMed Kim SK, Fan Y, Papadimitrakopoulou V, et al: DPC4, a candidate tumor suppressor gene, is altered infrequently in head and neck squamous cell carcinoma. Cancer Res. 1996, 56: 2519-2521.PubMed
34.
go back to reference Kawate S, Takenoshita S, Ohwada S, et al: Mutation analysis of transforming growth factor β type II receptor, Smad2, and Smad4 in hepatocellular carcinoma. Int J Oncol. 1999, 14: 127-131.PubMed Kawate S, Takenoshita S, Ohwada S, et al: Mutation analysis of transforming growth factor β type II receptor, Smad2, and Smad4 in hepatocellular carcinoma. Int J Oncol. 1999, 14: 127-131.PubMed
35.
go back to reference Kong XT, Choi SH, Inoue A, et al: Expression and mutational analysis of the DCC, DPC4, and MADR2/JV18-1 genes in neuroblastoma. Cancer Res. 1997, 57: 3772-3778.PubMed Kong XT, Choi SH, Inoue A, et al: Expression and mutational analysis of the DCC, DPC4, and MADR2/JV18-1 genes in neuroblastoma. Cancer Res. 1997, 57: 3772-3778.PubMed
36.
go back to reference Nagatake M, Takagi Y, Osada H, et al: Somatic in vivo alterations of the DPC4 gene at 18q21 in human lung cancers. Cancer Res. 1996, 56: 2718-2720.PubMed Nagatake M, Takagi Y, Osada H, et al: Somatic in vivo alterations of the DPC4 gene at 18q21 in human lung cancers. Cancer Res. 1996, 56: 2718-2720.PubMed
37.
go back to reference Schutte M, Hruban RH, Hedrik L, et al: DPC4 gene in various tumor types. Cancer Res. 1996, 56: 2527-2530.PubMed Schutte M, Hruban RH, Hedrik L, et al: DPC4 gene in various tumor types. Cancer Res. 1996, 56: 2527-2530.PubMed
38.
go back to reference Eppert K, Scherer SW, Ozcelik H, et al: MADR2 maps to 18q21 and encodes a TGFβ-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell. 1996, 86: 543-552. 10.1016/S0092-8674(00)80128-2. This study identifies Smad2 as a candidate tumor suppressor that is inactivated in some colorectal carcinomas and is regulated specifically by TGF-β signaling. Its inactivation is likely to contribute to loss of TGF-β-mediated growth inhibition in affected cells.PubMedCrossRef Eppert K, Scherer SW, Ozcelik H, et al: MADR2 maps to 18q21 and encodes a TGFβ-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell. 1996, 86: 543-552. 10.1016/S0092-8674(00)80128-2. This study identifies Smad2 as a candidate tumor suppressor that is inactivated in some colorectal carcinomas and is regulated specifically by TGF-β signaling. Its inactivation is likely to contribute to loss of TGF-β-mediated growth inhibition in affected cells.PubMedCrossRef
39.
go back to reference Miyaki M, Iijima T, Konishi M, et al: Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene. 1999, 18: 3098-3103. 10.1038/sj.onc.1202642.PubMedCrossRef Miyaki M, Iijima T, Konishi M, et al: Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene. 1999, 18: 3098-3103. 10.1038/sj.onc.1202642.PubMedCrossRef
40.
go back to reference Riggins GJ, Thiagalingam S, Rozenblum E, et al: Mad-related genes in the human. Nat Genet. 1996, 13: 347-349.PubMedCrossRef Riggins GJ, Thiagalingam S, Rozenblum E, et al: Mad-related genes in the human. Nat Genet. 1996, 13: 347-349.PubMedCrossRef
41.
42.
go back to reference Uchida K, Nagatake M, Osada H, et al: Somatic in vivo alterations of the JV18-1 gene at 18q21 in human lung cancers. Cancer Res. 1996, 56: 5583-5585.PubMed Uchida K, Nagatake M, Osada H, et al: Somatic in vivo alterations of the JV18-1 gene at 18q21 in human lung cancers. Cancer Res. 1996, 56: 5583-5585.PubMed
43.
go back to reference Bevan S, Woodford-Richens K, Rozen P, et al: Screening SMAD1, SMAD2, SMAD3, and SMAD5 for germline mutations in juvenile polyposis syndrome. Gut. 1999, 45: 406-408.PubMedPubMedCentralCrossRef Bevan S, Woodford-Richens K, Rozen P, et al: Screening SMAD1, SMAD2, SMAD3, and SMAD5 for germline mutations in juvenile polyposis syndrome. Gut. 1999, 45: 406-408.PubMedPubMedCentralCrossRef
44.
go back to reference Jonson T, Gorunova L, Dawiskiba S, et al: Molecular analyses of the 15q and 18q SMAD genes in pancreatic cancer. Genes Chromosomes Cancer. 1999, 24: 62-71. 10.1002/(SICI)1098-2264(199901)24:1<62::AID-GCC9>3.0.CO;2-4.PubMedCrossRef Jonson T, Gorunova L, Dawiskiba S, et al: Molecular analyses of the 15q and 18q SMAD genes in pancreatic cancer. Genes Chromosomes Cancer. 1999, 24: 62-71. 10.1002/(SICI)1098-2264(199901)24:1<62::AID-GCC9>3.0.CO;2-4.PubMedCrossRef
45.
go back to reference Ikezoe T, Takeuchi S, Kamioka M, et al: Analysis of the Smad2 gene in hematological malignancies. Leukemia. 1998, 12: 94-95. 10.1038/sj.leu.2400888.PubMedCrossRef Ikezoe T, Takeuchi S, Kamioka M, et al: Analysis of the Smad2 gene in hematological malignancies. Leukemia. 1998, 12: 94-95. 10.1038/sj.leu.2400888.PubMedCrossRef
46.
go back to reference Latil A, Pesche S, Valeri A, Fournier G, Cussenot O, Lidereau R: Expression and mutational analysis of the MADR2/Smad2 gene in human prostate cancer. Prostate. 1999, 40: 225-231. 10.1002/(SICI)1097-0045(19990901)40:4<225::AID-PROS3>3.0.CO;2-3.PubMedCrossRef Latil A, Pesche S, Valeri A, Fournier G, Cussenot O, Lidereau R: Expression and mutational analysis of the MADR2/Smad2 gene in human prostate cancer. Prostate. 1999, 40: 225-231. 10.1002/(SICI)1097-0045(19990901)40:4<225::AID-PROS3>3.0.CO;2-3.PubMedCrossRef
47.
go back to reference Maesawa C, Tamura G, Nishizuka S, et al: MAD-related genes on 18q21.1, Smad2 and Smad4, are altered infrequently in esophageal squamous cell carcinoma. Jpn J Cancer Res. 1997, 88: 340-343.PubMedCrossRef Maesawa C, Tamura G, Nishizuka S, et al: MAD-related genes on 18q21.1, Smad2 and Smad4, are altered infrequently in esophageal squamous cell carcinoma. Jpn J Cancer Res. 1997, 88: 340-343.PubMedCrossRef
48.
go back to reference Roth S, Sistonen P, Salovaara R, et al: SMAD genes in juvenile polyposis. Genes Chromosomes Cancer. 1999, 26: 54-61. 10.1002/(SICI)1098-2264(199909)26:1<54::AID-GCC8>3.0.CO;2-D.PubMedCrossRef Roth S, Sistonen P, Salovaara R, et al: SMAD genes in juvenile polyposis. Genes Chromosomes Cancer. 1999, 26: 54-61. 10.1002/(SICI)1098-2264(199909)26:1<54::AID-GCC8>3.0.CO;2-D.PubMedCrossRef
49.
go back to reference Shitara Y, Yokozaki H, Yasui W, et al: No mutations of the Smad2 gene in human sporadic gastric carcinomas. Jpn J Clin Oncol. 1999, 29: 3-7. 10.1093/jjco/29.1.3.PubMedCrossRef Shitara Y, Yokozaki H, Yasui W, et al: No mutations of the Smad2 gene in human sporadic gastric carcinomas. Jpn J Clin Oncol. 1999, 29: 3-7. 10.1093/jjco/29.1.3.PubMedCrossRef
50.
go back to reference Wieser R, Gruber B, Rieder H, Fonatsch C: Mutational analysis of the tumor suppressor Smad2 in acute lymphoid and myeloid leukemia. Leukemia. 1998, 12: 1114-1118. 10.1038/sj.leu.2401073.PubMedCrossRef Wieser R, Gruber B, Rieder H, Fonatsch C: Mutational analysis of the tumor suppressor Smad2 in acute lymphoid and myeloid leukemia. Leukemia. 1998, 12: 1114-1118. 10.1038/sj.leu.2401073.PubMedCrossRef
51.
go back to reference Yokota T, Matsumoto S, Yoshimoto M, et al: Mapping of a breast cancer tumor suppressor gene locus to a 4-cM interval on chromosome 18q21. Jpn J Cancer Res. 1997, 88: 959-964.PubMedCrossRef Yokota T, Matsumoto S, Yoshimoto M, et al: Mapping of a breast cancer tumor suppressor gene locus to a 4-cM interval on chromosome 18q21. Jpn J Cancer Res. 1997, 88: 959-964.PubMedCrossRef
52.
go back to reference Arai T, Akiyama Y, Okabe S, Ando M, Endo M, Yuasa Y: Genomic structure of the human Smad3 gene and its infrequent alterations in colorectal cancers. Cancer Lett. 1998, 122: 157-163. 10.1016/S0304-3835(97)00384-4.PubMedCrossRef Arai T, Akiyama Y, Okabe S, Ando M, Endo M, Yuasa Y: Genomic structure of the human Smad3 gene and its infrequent alterations in colorectal cancers. Cancer Lett. 1998, 122: 157-163. 10.1016/S0304-3835(97)00384-4.PubMedCrossRef
53.
go back to reference Riggins GJ, Kinzler KW, Vogelstein B, Thiagalingam S: Frequency of Smad mutations in human cancers. Cancer Res. 1997, 57: 2578-2580.PubMed Riggins GJ, Kinzler KW, Vogelstein B, Thiagalingam S: Frequency of Smad mutations in human cancers. Cancer Res. 1997, 57: 2578-2580.PubMed
54.
go back to reference Wang D, Kanuma T, Takama F, et al: Mutation analysis of the smad3 gene in human ovarian cancers. Int J Oncol. 1999, 15: 949-953. 10.1021/bp990088o.PubMed Wang D, Kanuma T, Takama F, et al: Mutation analysis of the smad3 gene in human ovarian cancers. Int J Oncol. 1999, 15: 949-953. 10.1021/bp990088o.PubMed
55.
go back to reference Kalkhoven E, Roelen BA, de Winter JP, et al: Resistance to transforming growth factor β and activin due to reduced receptor expression in human breast tumor cell lines. Cell Growth Diff. 1995, 6: 1151-1161. This study demonstrates that in some breast cancer cells, loss of TGF-β growth inhibition is due to reduced expression of TβR-II. Exogenous expression of TβR-II can restore TGF-β sensitivity.PubMed Kalkhoven E, Roelen BA, de Winter JP, et al: Resistance to transforming growth factor β and activin due to reduced receptor expression in human breast tumor cell lines. Cell Growth Diff. 1995, 6: 1151-1161. This study demonstrates that in some breast cancer cells, loss of TGF-β growth inhibition is due to reduced expression of TβR-II. Exogenous expression of TβR-II can restore TGF-β sensitivity.PubMed
56.
go back to reference Ko Y, Banerji SS, Liu Y, et al: Expression of transforming growth factor-β receptor type II and tumorigenicity in human breast adenocarcinoma MCF-7 cells. J Cell Physiol. 1998, 176: 424-434. 10.1002/(SICI)1097-4652(199808)176:2<424::AID-JCP21>3.0.CO;2-1.PubMedCrossRef Ko Y, Banerji SS, Liu Y, et al: Expression of transforming growth factor-β receptor type II and tumorigenicity in human breast adenocarcinoma MCF-7 cells. J Cell Physiol. 1998, 176: 424-434. 10.1002/(SICI)1097-4652(199808)176:2<424::AID-JCP21>3.0.CO;2-1.PubMedCrossRef
57.
go back to reference Sun L, Wu G, Willson JK, et al: Expression of transforming growth factor β type II receptor leads to reduced malignancy in human breast cancer MCF-7 cells. J Biol Chem. 1994, 269: 26449-26455. This study demonstrates that in a breast cancer cell line, loss of TGFβ growth inhibition is due to reduced expression of TβR-II. Exogenous expression of TβR-II can restore TGFβ sensitivity and reduce malignancy of the cells.PubMed Sun L, Wu G, Willson JK, et al: Expression of transforming growth factor β type II receptor leads to reduced malignancy in human breast cancer MCF-7 cells. J Biol Chem. 1994, 269: 26449-26455. This study demonstrates that in a breast cancer cell line, loss of TGFβ growth inhibition is due to reduced expression of TβR-II. Exogenous expression of TβR-II can restore TGFβ sensitivity and reduce malignancy of the cells.PubMed
58.
go back to reference Chakravarthy D, Green AR, Green VL, Kerin MJ, Speirs V: Expression and secretion of TGF-β isoforms and expression of TGF-β-receptors I,II and III in normal and neoplastic human breast. Int J Oncol. 1999, 15: 187-194.PubMed Chakravarthy D, Green AR, Green VL, Kerin MJ, Speirs V: Expression and secretion of TGF-β isoforms and expression of TGF-β-receptors I,II and III in normal and neoplastic human breast. Int J Oncol. 1999, 15: 187-194.PubMed
59.
go back to reference Baldwin RL, Friess H, Yokoyama M, et al: Attenuated ALK5 receptor expression in human pancreatic cancer: correlation with resistance to growth inhibition. Int J Cancer. 1996, 67: 283-288. 10.1002/(SICI)1097-0215(19960717)67:2<283::AID-IJC21>3.0.CO;2-B.PubMedCrossRef Baldwin RL, Friess H, Yokoyama M, et al: Attenuated ALK5 receptor expression in human pancreatic cancer: correlation with resistance to growth inhibition. Int J Cancer. 1996, 67: 283-288. 10.1002/(SICI)1097-0215(19960717)67:2<283::AID-IJC21>3.0.CO;2-B.PubMedCrossRef
60.
go back to reference Wagner M, Kleeff J, Lopez ME, Bockman I, Massaque J, Korc M: Transfection of the type I TGF-β receptor restores TGF-β responsiveness in pancreatic cancer. Int J Cancer. 1998, 78: 255-260. 10.1002/(SICI)1097-0215(19981005)78:2<255::AID-IJC21>3.0.CO;2-8.PubMedCrossRef Wagner M, Kleeff J, Lopez ME, Bockman I, Massaque J, Korc M: Transfection of the type I TGF-β receptor restores TGF-β responsiveness in pancreatic cancer. Int J Cancer. 1998, 78: 255-260. 10.1002/(SICI)1097-0215(19981005)78:2<255::AID-IJC21>3.0.CO;2-8.PubMedCrossRef
61.
go back to reference Wang J, Han W, Zborowska E, et al: Reduced expression of transforming growth factor β type I receptor contributes to the malignancy of human colon carcinoma cells. J Biol Chem. 1996, 271: 17366-17371. 10.1074/jbc.271.29.17366.PubMedCrossRef Wang J, Han W, Zborowska E, et al: Reduced expression of transforming growth factor β type I receptor contributes to the malignancy of human colon carcinoma cells. J Biol Chem. 1996, 271: 17366-17371. 10.1074/jbc.271.29.17366.PubMedCrossRef
62.
go back to reference DeCoteau JF, Knaus PI, Yankelev H, et al: Loss of functional cell surface transforming growth factor β (TGF-β) type 1 receptor correlates with insensitivity to TGF-β in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 1997, 94: 5877-5881. 10.1073/pnas.94.11.5877.PubMedPubMedCentralCrossRef DeCoteau JF, Knaus PI, Yankelev H, et al: Loss of functional cell surface transforming growth factor β (TGF-β) type 1 receptor correlates with insensitivity to TGF-β in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 1997, 94: 5877-5881. 10.1073/pnas.94.11.5877.PubMedPubMedCentralCrossRef
63.
go back to reference Pouliot F, Labrie C: Expression profile of agonistic Smads in human breast cancer cells: absence of regulation by estrogens. Int J Cancer. 1999, 81: 98-103. 10.1002/(SICI)1097-0215(19990331)81:1<98::AID-IJC17>3.0.CO;2-9.PubMedCrossRef Pouliot F, Labrie C: Expression profile of agonistic Smads in human breast cancer cells: absence of regulation by estrogens. Int J Cancer. 1999, 81: 98-103. 10.1002/(SICI)1097-0215(19990331)81:1<98::AID-IJC17>3.0.CO;2-9.PubMedCrossRef
64.
go back to reference Kretzschmar M, Doody J, Timokhina I, Massagué J: A mechanism of repression of TGFβ/Smad signaling by oncogenic Ras. Genes Dev. 1999, 13: 804-816. This study describes a novel mechanism of regulation of TGF-β/SMAD signaling via phosphorylation of SMAD proteins by Erk MAP-kinase. This mechanism contributes to loss of TGF-β growth inhibition in Ras-transformed epithelial cells, and may be of importance in cancer cells with elevated Ras and Erk activities.PubMedPubMedCentralCrossRef Kretzschmar M, Doody J, Timokhina I, Massagué J: A mechanism of repression of TGFβ/Smad signaling by oncogenic Ras. Genes Dev. 1999, 13: 804-816. This study describes a novel mechanism of regulation of TGF-β/SMAD signaling via phosphorylation of SMAD proteins by Erk MAP-kinase. This mechanism contributes to loss of TGF-β growth inhibition in Ras-transformed epithelial cells, and may be of importance in cancer cells with elevated Ras and Erk activities.PubMedPubMedCentralCrossRef
65.
go back to reference Calonge MJ, Massague J: Smad4/DPC4 silencing and hyperactive ras jointly disrupt transforming growth factor-β antiproliferative responses in colon cancer cells. J Biol Chem. 1999, 274: 33637-33643. 10.1074/jbc.274.47.33637.PubMedCrossRef Calonge MJ, Massague J: Smad4/DPC4 silencing and hyperactive ras jointly disrupt transforming growth factor-β antiproliferative responses in colon cancer cells. J Biol Chem. 1999, 274: 33637-33643. 10.1074/jbc.274.47.33637.PubMedCrossRef
66.
go back to reference Marshall C: How do small GTPase signal transduction pathways regulate cell cycle entry?. Curr Opin Cell Biol. 1999, 11: 732-736. 10.1016/S0955-0674(99)00044-7.PubMedCrossRef Marshall C: How do small GTPase signal transduction pathways regulate cell cycle entry?. Curr Opin Cell Biol. 1999, 11: 732-736. 10.1016/S0955-0674(99)00044-7.PubMedCrossRef
67.
go back to reference Rochlitz CF, Scott GK, Dodson JM, et al: Incidence of activating ras oncogene mutations associated with primary and metastatic human breast cancer. Cancer Res. 1989, 49: 357-360.PubMed Rochlitz CF, Scott GK, Dodson JM, et al: Incidence of activating ras oncogene mutations associated with primary and metastatic human breast cancer. Cancer Res. 1989, 49: 357-360.PubMed
68.
go back to reference Dillon DA, Howe CL, Bosari S, Costa J: The molecular biology of breast cancer: accelerating clinical applications. Crit Rev Oncog. 1998, 9: 125-140.PubMedCrossRef Dillon DA, Howe CL, Bosari S, Costa J: The molecular biology of breast cancer: accelerating clinical applications. Crit Rev Oncog. 1998, 9: 125-140.PubMedCrossRef
69.
go back to reference Press MF, Bernstein L, Thomas PA, et al: HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. J Clin Oncol. 1997, 15: 2894-2904.PubMed Press MF, Bernstein L, Thomas PA, et al: HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. J Clin Oncol. 1997, 15: 2894-2904.PubMed
70.
go back to reference Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987, 235: 177-182.PubMedCrossRef Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987, 235: 177-182.PubMedCrossRef
71.
go back to reference Rajkumar T, Gullick WJ: The type I growth factor receptors in human breast cancer. Breast Cancer Res Treat. 1994, 29: 3-9.PubMedCrossRef Rajkumar T, Gullick WJ: The type I growth factor receptors in human breast cancer. Breast Cancer Res Treat. 1994, 29: 3-9.PubMedCrossRef
72.
go back to reference Seshadri R, Firgaira FA, Horsfall DJ, McCaul K, Setlur V, Kitchen P: Clinical significance of HER-2/neu oncogene amplification in primary breast cancer. The South Australian Breast Cancer Study Group. J Clin Oncol. 1993, 11: 1936-1942.PubMed Seshadri R, Firgaira FA, Horsfall DJ, McCaul K, Setlur V, Kitchen P: Clinical significance of HER-2/neu oncogene amplification in primary breast cancer. The South Australian Breast Cancer Study Group. J Clin Oncol. 1993, 11: 1936-1942.PubMed
73.
go back to reference de Caestecker MP, Parks WT, Frank CJ, et al: Smad2 transduces common signals from receptor serine-threonine and tyrosine kinases. Genes Dev. 1998, 12: 1587-1592.PubMedPubMedCentralCrossRef de Caestecker MP, Parks WT, Frank CJ, et al: Smad2 transduces common signals from receptor serine-threonine and tyrosine kinases. Genes Dev. 1998, 12: 1587-1592.PubMedPubMedCentralCrossRef
74.
go back to reference Piek E, Heldin CH, Ten Dijke P: Specificity, diversity, and regulation in TGF-β superfamily signaling. FASEB J. 1999, 13: 2105-2124.PubMed Piek E, Heldin CH, Ten Dijke P: Specificity, diversity, and regulation in TGF-β superfamily signaling. FASEB J. 1999, 13: 2105-2124.PubMed
75.
76.
go back to reference Hayashi H, Abdollah S, Qiu Y, et al: The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell. 1997, 89: 1165-1173. 10.1016/S0092-8674(00)80303-7. This study identifies a novel mechanism of regulation of TGF-β family signaling that involves a new class of SMAD proteins, the inhibitory SMAD proteins. Inhibition is mediated by competition between the inhibitory SMAD and receptor-regulated SMAD proteins for interaction with the receptors.PubMedCrossRef Hayashi H, Abdollah S, Qiu Y, et al: The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell. 1997, 89: 1165-1173. 10.1016/S0092-8674(00)80303-7. This study identifies a novel mechanism of regulation of TGF-β family signaling that involves a new class of SMAD proteins, the inhibitory SMAD proteins. Inhibition is mediated by competition between the inhibitory SMAD and receptor-regulated SMAD proteins for interaction with the receptors.PubMedCrossRef
77.
go back to reference Imamura T, Takase M, Nishihara A, et al: Smad6 inhibits signalling by the TGF-β superfamily. Nature. 1997, 389: 622-626. 10.1038/39355.PubMedCrossRef Imamura T, Takase M, Nishihara A, et al: Smad6 inhibits signalling by the TGF-β superfamily. Nature. 1997, 389: 622-626. 10.1038/39355.PubMedCrossRef
78.
go back to reference Nakao A, Afrakhte M, Morén A, et al: Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signaling. Nature. 1997, 389: 631-635. 10.1038/39369.PubMedCrossRef Nakao A, Afrakhte M, Morén A, et al: Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signaling. Nature. 1997, 389: 631-635. 10.1038/39369.PubMedCrossRef
79.
go back to reference Hata A, Lagna G, Massagué J, Hemmati-Brivanlou A: Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev. 1998, 12: 186-197. This study identifies a novel mechanism of regulation of TGF-β family signaling that involves a new class of SMAD proteins, the inhibitory SMAD proteins. Inhibition is mediated by competition between the inhibitory SMAD and Smad4 for association with receptor-activated SMAD proteins.PubMedPubMedCentralCrossRef Hata A, Lagna G, Massagué J, Hemmati-Brivanlou A: Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev. 1998, 12: 186-197. This study identifies a novel mechanism of regulation of TGF-β family signaling that involves a new class of SMAD proteins, the inhibitory SMAD proteins. Inhibition is mediated by competition between the inhibitory SMAD and Smad4 for association with receptor-activated SMAD proteins.PubMedPubMedCentralCrossRef
80.
go back to reference Afrakhte M, Moren A, Jossan S, et al: Induction of inhibitory Smad6 and Smad7 mRNA by TGF-β family members. Biochem Biophys Res Commun. 1998, 249: 505-511. 10.1006/bbrc.1998.9170.PubMedCrossRef Afrakhte M, Moren A, Jossan S, et al: Induction of inhibitory Smad6 and Smad7 mRNA by TGF-β family members. Biochem Biophys Res Commun. 1998, 249: 505-511. 10.1006/bbrc.1998.9170.PubMedCrossRef
81.
go back to reference Takase M, Imamura T, Sampath TK, et al: Induction of Smad6 mRNA by bone morphogenetic proteins. Biochem Biophys Res Commun. 1998, 244: 26-29. 10.1006/bbrc.1998.8200.PubMedCrossRef Takase M, Imamura T, Sampath TK, et al: Induction of Smad6 mRNA by bone morphogenetic proteins. Biochem Biophys Res Commun. 1998, 244: 26-29. 10.1006/bbrc.1998.8200.PubMedCrossRef
82.
go back to reference Kleeff J, Maruyama H, Friess H, Buchler MW, Falb D, Korc M: Smad6 suppresses TGF-β-induced growth inhibition in COLO-357 pancreatic cancer cells and is overexpressed in pancreatic cancer. Biochem Biophys Res Commun. 1999, 255: 268-273. 10.1006/bbrc.1999.0171.PubMedCrossRef Kleeff J, Maruyama H, Friess H, Buchler MW, Falb D, Korc M: Smad6 suppresses TGF-β-induced growth inhibition in COLO-357 pancreatic cancer cells and is overexpressed in pancreatic cancer. Biochem Biophys Res Commun. 1999, 255: 268-273. 10.1006/bbrc.1999.0171.PubMedCrossRef
83.
go back to reference Kleeff J, Ishiwata T, Maruyama H, et al: The TGF-β signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer. Oncogene. 1999, 18: 5363-5372. 10.1038/sj.onc.1202909. This study provides evidence that elevated expression of inhibitory SMAD proteins may play a role in human cancer.PubMedCrossRef Kleeff J, Ishiwata T, Maruyama H, et al: The TGF-β signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer. Oncogene. 1999, 18: 5363-5372. 10.1038/sj.onc.1202909. This study provides evidence that elevated expression of inhibitory SMAD proteins may play a role in human cancer.PubMedCrossRef
84.
go back to reference Korchynskyi O, Landstrom M, Stoika R, et al: Expression of Smad proteins in human colorectal cancer. Int J Cancer. 1999, 82: 197-202. 10.1002/(SICI)1097-0215(19990719)82:2<197::AID-IJC8>3.0.CO;2-V.PubMedCrossRef Korchynskyi O, Landstrom M, Stoika R, et al: Expression of Smad proteins in human colorectal cancer. Int J Cancer. 1999, 82: 197-202. 10.1002/(SICI)1097-0215(19990719)82:2<197::AID-IJC8>3.0.CO;2-V.PubMedCrossRef
85.
go back to reference Akiyoshi S, Inoue H, Hanai J-i, et al: c-Ski acts as a transcriptional Co-repressor in transforming growth factor-β signaling through interaction with Smads. J Biol Chem. 1999, 274: 35269-35277. 10.1074/jbc.274.49.35269. This study identifies the oncoprotein c-Ski as a transcriptional corepressor for SMAD proteins that can inhibit TGF-β signaling when overexpressed. This suggests that inhibition of TGF-β signaling might be an important component of the oncogenic properties of c-Ski.PubMedCrossRef Akiyoshi S, Inoue H, Hanai J-i, et al: c-Ski acts as a transcriptional Co-repressor in transforming growth factor-β signaling through interaction with Smads. J Biol Chem. 1999, 274: 35269-35277. 10.1074/jbc.274.49.35269. This study identifies the oncoprotein c-Ski as a transcriptional corepressor for SMAD proteins that can inhibit TGF-β signaling when overexpressed. This suggests that inhibition of TGF-β signaling might be an important component of the oncogenic properties of c-Ski.PubMedCrossRef
86.
go back to reference Luo K, Stroschein SL, Wang W, et al: The Ski oncoprotein interacts with the Smad proteins to repress TGFβ signaling. Genes Dev. 1999, 13: 2196-2206. 10.1101/gad.13.17.2196.PubMedPubMedCentralCrossRef Luo K, Stroschein SL, Wang W, et al: The Ski oncoprotein interacts with the Smad proteins to repress TGFβ signaling. Genes Dev. 1999, 13: 2196-2206. 10.1101/gad.13.17.2196.PubMedPubMedCentralCrossRef
87.
go back to reference Stroschein SL, Wang W, Zhou S, Zhou Q, Luo K: Negative feedback regulation of TGF-β signaling by the SnoN oncoprotein. Science. 1999, 286: 771-774. 10.1126/science.286.5440.771. This study identifies the oncoprotein c-SnoN as a transcriptional corepressor for SMAD proteins that maintains TGF-β-responsive genes in a repressed state in the absence of TGF-β signaling and is involved in negative feedback regulation subsequent to TGF-β stimulation.PubMedCrossRef Stroschein SL, Wang W, Zhou S, Zhou Q, Luo K: Negative feedback regulation of TGF-β signaling by the SnoN oncoprotein. Science. 1999, 286: 771-774. 10.1126/science.286.5440.771. This study identifies the oncoprotein c-SnoN as a transcriptional corepressor for SMAD proteins that maintains TGF-β-responsive genes in a repressed state in the absence of TGF-β signaling and is involved in negative feedback regulation subsequent to TGF-β stimulation.PubMedCrossRef
88.
go back to reference Sun Y, Liu X, Ng-Eaton E, Lodish HF, Weinberg RA: SnoN and ski protooncoproteins are rapidly degraded in response to transforming growth factor β signaling. Proc Natl Acad Sci USA. 1999, 96: 12442-12447. 10.1073/pnas.96.22.12442.PubMedPubMedCentralCrossRef Sun Y, Liu X, Ng-Eaton E, Lodish HF, Weinberg RA: SnoN and ski protooncoproteins are rapidly degraded in response to transforming growth factor β signaling. Proc Natl Acad Sci USA. 1999, 96: 12442-12447. 10.1073/pnas.96.22.12442.PubMedPubMedCentralCrossRef
89.
go back to reference Sun Y, Liu X, Eaton EN, Lane WS, Lodish HF, Weinberg RA: Interaction of the Ski oncoprotein with Smad3 regulates TGF-β signaling. Mol Cell. 1999, 4: 499-509.PubMedCrossRef Sun Y, Liu X, Eaton EN, Lane WS, Lodish HF, Weinberg RA: Interaction of the Ski oncoprotein with Smad3 regulates TGF-β signaling. Mol Cell. 1999, 4: 499-509.PubMedCrossRef
90.
go back to reference Wotton D, Lo RS, Lee S, Massague J: A Smad transcriptional corepressor. Cell. 1999, 97: 29-39. This study describes a novel mechanism of regulation of nuclear SMAD activity that involves the interaction of SMAD proteins with a transcriptional corepressor, TGIF. TGIF competes with association of SMAD proteins with the coactivators p300/CBP, presumably resulting in opposing effects on histone acetylation.PubMedCrossRef Wotton D, Lo RS, Lee S, Massague J: A Smad transcriptional corepressor. Cell. 1999, 97: 29-39. This study describes a novel mechanism of regulation of nuclear SMAD activity that involves the interaction of SMAD proteins with a transcriptional corepressor, TGIF. TGIF competes with association of SMAD proteins with the coactivators p300/CBP, presumably resulting in opposing effects on histone acetylation.PubMedCrossRef
91.
go back to reference Nomura T, Khan MM, Kaul SC, et al: Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor. Genes Dev. 1999, 13: 412-423.PubMedPubMedCentralCrossRef Nomura T, Khan MM, Kaul SC, et al: Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor. Genes Dev. 1999, 13: 412-423.PubMedPubMedCentralCrossRef
92.
go back to reference Kouzarides T: Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev. 1999, 9: 40-48. 10.1016/S0959-437X(99)80006-9.PubMedCrossRef Kouzarides T: Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev. 1999, 9: 40-48. 10.1016/S0959-437X(99)80006-9.PubMedCrossRef
93.
go back to reference Colmenares C, Sutrave P, Hughes SH, Stavnezer E: Activation of the c-ski oncogene by overexpression. J Virol. 1991, 65: 4929-4935.PubMedPubMedCentral Colmenares C, Sutrave P, Hughes SH, Stavnezer E: Activation of the c-ski oncogene by overexpression. J Virol. 1991, 65: 4929-4935.PubMedPubMedCentral
94.
go back to reference Fumagalli S, Doneda L, Nomura N, Larizza L: Expression of the c-ski proto-oncogene in human melanoma cell lines. Melanoma Res. 1993, 3: 23-27.PubMedCrossRef Fumagalli S, Doneda L, Nomura N, Larizza L: Expression of the c-ski proto-oncogene in human melanoma cell lines. Melanoma Res. 1993, 3: 23-27.PubMedCrossRef
95.
go back to reference Nomura N, Sasamoto S, Ishii S, Date T, Matsui M, Ishizaki R: Isolation of human cDNA clones of ski and the ski-related gene, sno. Nucleic Acids Res. 1989, 17: 5489-5500.PubMedPubMedCentralCrossRef Nomura N, Sasamoto S, Ishii S, Date T, Matsui M, Ishizaki R: Isolation of human cDNA clones of ski and the ski-related gene, sno. Nucleic Acids Res. 1989, 17: 5489-5500.PubMedPubMedCentralCrossRef
96.
go back to reference Yamanouchi K, Soeta C, Harada R, Naito K, Tojo H: Endometrial expression of cellular protooncogene c-ski and its regulation by estradiol-17β. FEBS Lett. 1999, 449: 273-276. 10.1016/S0014-5793(99)00424-X.PubMedCrossRef Yamanouchi K, Soeta C, Harada R, Naito K, Tojo H: Endometrial expression of cellular protooncogene c-ski and its regulation by estradiol-17β. FEBS Lett. 1999, 449: 273-276. 10.1016/S0014-5793(99)00424-X.PubMedCrossRef
97.
go back to reference Nucifora G: The EVI1 gene in myeloid leukemia. Leukemia. 1997, 11: 2022-2031. 10.1038/sj.leu.2400880.PubMedCrossRef Nucifora G: The EVI1 gene in myeloid leukemia. Leukemia. 1997, 11: 2022-2031. 10.1038/sj.leu.2400880.PubMedCrossRef
98.
go back to reference Kurokawa M, Mitani K, Irie K, et al: The oncoprotein Evi-1 represses TGF-β signalling by inhibiting Smad3. Nature. 1998, 394: 92-96. 10.1038/27945. This study identifies the oncoprotein Evi-1 as a repressor of growth inhibitory TGF-β signaling. Repression is achieved by direct interaction between Evi-1 and Smad3, resulting in the inhibition of Smad3 transcriptional activity.PubMedCrossRef Kurokawa M, Mitani K, Irie K, et al: The oncoprotein Evi-1 represses TGF-β signalling by inhibiting Smad3. Nature. 1998, 394: 92-96. 10.1038/27945. This study identifies the oncoprotein Evi-1 as a repressor of growth inhibitory TGF-β signaling. Repression is achieved by direct interaction between Evi-1 and Smad3, resulting in the inhibition of Smad3 transcriptional activity.PubMedCrossRef
99.
go back to reference Kurokawa M, Mitani K, Imai Y, Ogawa S, Yazaki Y, Hirai H: The t(3;21) fusion product, AML1/Evi-1, interacts with Smad3 and blocks transforming growth factor-β-mediated growth inhibition of myeloid cells. Blood. 1998, 92: 4003-4012.PubMed Kurokawa M, Mitani K, Imai Y, Ogawa S, Yazaki Y, Hirai H: The t(3;21) fusion product, AML1/Evi-1, interacts with Smad3 and blocks transforming growth factor-β-mediated growth inhibition of myeloid cells. Blood. 1998, 92: 4003-4012.PubMed
100.
101.
go back to reference Kurokawa M, Ogawa S, Tanaka T, et al: The AML1/Evi-1 fusion protein in the t(3;21) translocation exhibits transforming activity on Rat1 fibroblasts with dependence on the Evi-1 sequence. Oncogene. 1995, 11: 833-840.PubMed Kurokawa M, Ogawa S, Tanaka T, et al: The AML1/Evi-1 fusion protein in the t(3;21) translocation exhibits transforming activity on Rat1 fibroblasts with dependence on the Evi-1 sequence. Oncogene. 1995, 11: 833-840.PubMed
102.
go back to reference Kilbey A, Stephens V, Bartholomew C: Loss of cell cycle control by deregulation of cyclin-dependent kinase 2 kinase activity in Evi-1 transformed fibroblasts. Cell Growth Diff. 1999, 10: 601-610.PubMed Kilbey A, Stephens V, Bartholomew C: Loss of cell cycle control by deregulation of cyclin-dependent kinase 2 kinase activity in Evi-1 transformed fibroblasts. Cell Growth Diff. 1999, 10: 601-610.PubMed
103.
go back to reference Onichtchouk D, Chen YG, Dosch R, et al: Silencing of TGF-β signalling by the pseudoreceptor BAMBI. Nature. 1999, 401: 480-485. 10.1038/46794. This study describes a novel transmembrane protein, BAMBI, that is similar to type I TGF-β receptors but lacks a kinase domain. BAMBI can inhibit TGF-β family signaling by preventing the formation of signaling competent receptor complexes.PubMedCrossRef Onichtchouk D, Chen YG, Dosch R, et al: Silencing of TGF-β signalling by the pseudoreceptor BAMBI. Nature. 1999, 401: 480-485. 10.1038/46794. This study describes a novel transmembrane protein, BAMBI, that is similar to type I TGF-β receptors but lacks a kinase domain. BAMBI can inhibit TGF-β family signaling by preventing the formation of signaling competent receptor complexes.PubMedCrossRef
104.
go back to reference Degen WG, Weterman MA, van Groningen JJ, et al: Expression of nma, a novel gene, inversely correlates with the metastatic potential of human melanoma cell lines and xenografts. Int J Cancer. 1996, 65: 460-465. 10.1002/(SICI)1097-0215(19960208)65:4<460::AID-IJC12>3.0.CO;2-E.PubMedCrossRef Degen WG, Weterman MA, van Groningen JJ, et al: Expression of nma, a novel gene, inversely correlates with the metastatic potential of human melanoma cell lines and xenografts. Int J Cancer. 1996, 65: 460-465. 10.1002/(SICI)1097-0215(19960208)65:4<460::AID-IJC12>3.0.CO;2-E.PubMedCrossRef
105.
go back to reference Donovan J, Slingerland J: Transforming growth factor-β and breast cancer: cell cycle arrest by transforming growth factor-β and its disruption in cancer. Breast Cancer Res. 2000, 2: 116-124. 10.1186/bcr43.PubMedPubMedCentralCrossRef Donovan J, Slingerland J: Transforming growth factor-β and breast cancer: cell cycle arrest by transforming growth factor-β and its disruption in cancer. Breast Cancer Res. 2000, 2: 116-124. 10.1186/bcr43.PubMedPubMedCentralCrossRef
Metadata
Title
Transforming growth factor-β and breast cancer: Transforming growth factor-β/SMAD signaling defects and cancer
Author
Marcus Kretzschmar
Publication date
01-04-2000
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 2/2000
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr42

Other articles of this Issue 2/2000

Breast Cancer Research 2/2000 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine