Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Research

Transcriptome analysis of intestine from alk-SMase knockout mice reveals the effect of alk-SMase

Authors: Jiang Zhu, Lingqi Wang, Zhongwu Guo, Tao Zhang, Ping Zhang

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

Objective

Intestinal alkaline sphingomyelinase (alk-SMase) generates ceramide and inactivates platelet-activating factor associated with digestion and inhibition of cancer. There is few study to analyze the correlated function and characterize the genes related to alk-SMase comprehensively. We characterised transcriptome landscapes of intestine tissues from alk-SMase knockout (KO) mice aiming to identify novel associated genes and research targets.

Methods

We performed the high-resolution RNA sequencing of alk-SMase KO mice and compared them to wild type (WT) mice. Differentially expressed genes (DEGs) for the training group were screened. Functional enrichment analysis of the DEGs between KO mice and WT mice was implemented using the Database for Annotation, Visualization and Integrated Discovery (DAVID). An integrated protein–protein interaction (PPI) and Kyoto Encyclopedia of Genes and Genomes (KEGG) network was chose to study the relationship of differentially expressed gene. Moreover, quantitative real-time polymerase chain reaction (qPCR) was further used to validate the accuracy of RNA-seq technology.

Results

Our RNA-seq data found 97 differentially expressed mRNAs between the WT mice and alk-SMase gene NPP7 KO mice, in which 32 were significantly up-regulated and 65 were down-regulated, including protein coding genes, non-coding RNAs. Notably, the results of gene ontology functional enrichment analysis indicated that DEGs were functionally associated with the immune response, regulation of cell proliferation and development related terms. Additionally, an integrated network analysis was shown that some modules was significantly related to alk-SMase and with accordance of previously results. We chose 6 of these genes randomly were validated the accuracy of RNA-seq technology using qPCR and 2 genes showed difference significantly (P < 0.05).

Conclusions

We investigated the potential biological significant of alk-SMase with high resolution genome-wide transcriptome of alk-SMase knockout mice. The results revealed new insight into the functional modules related to alk-SMase was involved in the intestinal related diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhang P, Chen Y, Cheng Y, Hertervig E, Ohlsson L, Nilsson A, Duan RD. Alkaline sphingomyelinase (NPP7) promotes cholesterol absorption by affecting sphingomyelin levels in the gut: a study with NPP7 knockout mice. Am J Physiol Gastrointest Liver Physiol. 2014;306:G903–8.PubMedCrossRef Zhang P, Chen Y, Cheng Y, Hertervig E, Ohlsson L, Nilsson A, Duan RD. Alkaline sphingomyelinase (NPP7) promotes cholesterol absorption by affecting sphingomyelin levels in the gut: a study with NPP7 knockout mice. Am J Physiol Gastrointest Liver Physiol. 2014;306:G903–8.PubMedCrossRef
2.
go back to reference Wu J, Liu F, Nilsson A, Duan RD. Pancreatic trypsin cleaves intestinal alkaline sphingomyelinase from mucosa and enhances the sphingomyelinase activity. Am J Physiol Gastrointest Liver Physiol. 2004;287:G967–73.PubMedCrossRef Wu J, Liu F, Nilsson A, Duan RD. Pancreatic trypsin cleaves intestinal alkaline sphingomyelinase from mucosa and enhances the sphingomyelinase activity. Am J Physiol Gastrointest Liver Physiol. 2004;287:G967–73.PubMedCrossRef
3.
go back to reference Nilsson A. The presence of spingomyelin- and ceramide-cleaving enzymes in the small intestinal tract. Biochim Biophys Acta. 1969;176:339–47.PubMedCrossRef Nilsson A. The presence of spingomyelin- and ceramide-cleaving enzymes in the small intestinal tract. Biochim Biophys Acta. 1969;176:339–47.PubMedCrossRef
4.
go back to reference Nilsson A, Duan RD. Alkaline sphingomyelinases and ceramidases of the gastrointestinal tract. Chem Phys Lipids. 1999;102:97–105.PubMedCrossRef Nilsson A, Duan RD. Alkaline sphingomyelinases and ceramidases of the gastrointestinal tract. Chem Phys Lipids. 1999;102:97–105.PubMedCrossRef
5.
go back to reference Duan RD, Bergman T, Xu N, Wu J, Cheng Y, Duan J, Nelander S, Palmberg C, Nilsson A. Identification of human intestinal alkaline sphingomyelinase as a novel ecto-enzyme related to the nucleotide phosphodiesterase family. J Biol Chem. 2003;278:38528–36.PubMedCrossRef Duan RD, Bergman T, Xu N, Wu J, Cheng Y, Duan J, Nelander S, Palmberg C, Nilsson A. Identification of human intestinal alkaline sphingomyelinase as a novel ecto-enzyme related to the nucleotide phosphodiesterase family. J Biol Chem. 2003;278:38528–36.PubMedCrossRef
6.
go back to reference Zhang Y, Cheng Y, Hansen GH, Niels-Christiansen LL, Koentgen F, Ohlsson L, Nilsson A, Duan RD. Crucial role of alkaline sphingomyelinase in sphingomyelin digestion: a study on enzyme knockout mice. J Lipid Res. 2011;52:771–81.PubMedPubMedCentralCrossRef Zhang Y, Cheng Y, Hansen GH, Niels-Christiansen LL, Koentgen F, Ohlsson L, Nilsson A, Duan RD. Crucial role of alkaline sphingomyelinase in sphingomyelin digestion: a study on enzyme knockout mice. J Lipid Res. 2011;52:771–81.PubMedPubMedCentralCrossRef
8.
go back to reference Cheng Y, Nilsson A, Tomquist E, Duan RD. Purification, characterization, and expression of rat intestinal alkaline sphingomyelinase. J Lipid Res. 2002;43:316–24.PubMedCrossRef Cheng Y, Nilsson A, Tomquist E, Duan RD. Purification, characterization, and expression of rat intestinal alkaline sphingomyelinase. J Lipid Res. 2002;43:316–24.PubMedCrossRef
9.
go back to reference Duan RD, Cheng Y, Hansen G, Hertervig E, Liu JJ, Syk I, Sjostrom H, Nilsson A. Purification, localization, and expression of human intestinal alkaline sphingomyelinase. J Lipid Res. 2003;44:1241–50.PubMedCrossRef Duan RD, Cheng Y, Hansen G, Hertervig E, Liu JJ, Syk I, Sjostrom H, Nilsson A. Purification, localization, and expression of human intestinal alkaline sphingomyelinase. J Lipid Res. 2003;44:1241–50.PubMedCrossRef
10.
go back to reference Wu J, Cheng Y, Palmberg C, Bergman T, Nilsson A, Duan RD. Cloning of alkaline sphingomyelinase from rat intestinal mucosa and adjusting of the hypothetical protein XP_221184 in GenBank. Biochim Biophys Acta. 2005;1687:94–102.PubMedCrossRef Wu J, Cheng Y, Palmberg C, Bergman T, Nilsson A, Duan RD. Cloning of alkaline sphingomyelinase from rat intestinal mucosa and adjusting of the hypothetical protein XP_221184 in GenBank. Biochim Biophys Acta. 2005;1687:94–102.PubMedCrossRef
11.
go back to reference Andersson D, Kotarsky K, Wu J, Agace W, Duan RD. Expression of alkaline sphingomyelinase in yeast cells and anti-inflammatory effects of the expressed enzyme in a rat colitis model. Dig Dis Sci. 2009;54:1440–8.PubMedCrossRef Andersson D, Kotarsky K, Wu J, Agace W, Duan RD. Expression of alkaline sphingomyelinase in yeast cells and anti-inflammatory effects of the expressed enzyme in a rat colitis model. Dig Dis Sci. 2009;54:1440–8.PubMedCrossRef
12.
go back to reference Hertervig E, Nilsson A, Cheng Y, Duan RD. Purified intestinal alkaline sphingomyelinase inhibits proliferation without inducing apoptosis in HT-29 colon carcinoma cells. J Cancer Res Clin Oncol. 2003;129:577–82.PubMedCrossRef Hertervig E, Nilsson A, Cheng Y, Duan RD. Purified intestinal alkaline sphingomyelinase inhibits proliferation without inducing apoptosis in HT-29 colon carcinoma cells. J Cancer Res Clin Oncol. 2003;129:577–82.PubMedCrossRef
13.
go back to reference Feng D, Ohlsson L, Ling W, Nilsson A, Duan RD. Generating ceramide from sphingomyelin by alkaline sphingomyelinase in the gut enhances sphingomyelin-induced inhibition of cholesterol uptake in Caco-2 cells. Dig Dis Sci. 2010;55:3377–83.PubMedCrossRef Feng D, Ohlsson L, Ling W, Nilsson A, Duan RD. Generating ceramide from sphingomyelin by alkaline sphingomyelinase in the gut enhances sphingomyelin-induced inhibition of cholesterol uptake in Caco-2 cells. Dig Dis Sci. 2010;55:3377–83.PubMedCrossRef
14.
go back to reference Hertervig E, Nilsson A, Bjork J, Hultkrantz R, Duan RD. Familial adenomatous polyposis is associated with a marked decrease in alkaline sphingomyelinase activity: a key factor to the unrestrained cell proliferation? Br J Cancer. 1999;81:232–6.PubMedPubMedCentralCrossRef Hertervig E, Nilsson A, Bjork J, Hultkrantz R, Duan RD. Familial adenomatous polyposis is associated with a marked decrease in alkaline sphingomyelinase activity: a key factor to the unrestrained cell proliferation? Br J Cancer. 1999;81:232–6.PubMedPubMedCentralCrossRef
15.
go back to reference Hertervig E, Nilsson A, Nyberg L, Duan RD. Alkaline sphingomyelinase activity is decreased in human colorectal carcinoma. Cancer. 1997;79:448–53.PubMedCrossRef Hertervig E, Nilsson A, Nyberg L, Duan RD. Alkaline sphingomyelinase activity is decreased in human colorectal carcinoma. Cancer. 1997;79:448–53.PubMedCrossRef
16.
go back to reference Sjoqvist U, Hertervig E, Nilsson A, Duan RD, Ost A, Tribukait B, Lofberg R. Chronic colitis is associated with a reduction of mucosal alkaline sphingomyelinase activity. Inflamm Bowel Dis. 2002;8:258–63.PubMedCrossRef Sjoqvist U, Hertervig E, Nilsson A, Duan RD, Ost A, Tribukait B, Lofberg R. Chronic colitis is associated with a reduction of mucosal alkaline sphingomyelinase activity. Inflamm Bowel Dis. 2002;8:258–63.PubMedCrossRef
17.
go back to reference Ferreira PG, Jares P, Rico D, Gomez-Lopez G, Martinez-Trillos A, Villamor N, Ecker S, Gonzalez-Perez A, Knowles DG, Monlong J, Johnson R, Quesada V, Djebali S, Papasaikas P, Lopez-Guerra M, Colomer D, Royo C, Cazorla M, Pinyol M, Clot G, Aymerich M, Rozman M, Kulis M, Tamborero D, Gouin A, Blanc J, Gut M, Gut I, Puente XS, Pisano DG, Martin-Subero JI, Lopez-Bigas N, Lopez-Guillermo A, Valencia A, Lopez-Otin C, Campo E, Guigo R. Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia. Genome Res. 2014;24:212–26.PubMedPubMedCentralCrossRef Ferreira PG, Jares P, Rico D, Gomez-Lopez G, Martinez-Trillos A, Villamor N, Ecker S, Gonzalez-Perez A, Knowles DG, Monlong J, Johnson R, Quesada V, Djebali S, Papasaikas P, Lopez-Guerra M, Colomer D, Royo C, Cazorla M, Pinyol M, Clot G, Aymerich M, Rozman M, Kulis M, Tamborero D, Gouin A, Blanc J, Gut M, Gut I, Puente XS, Pisano DG, Martin-Subero JI, Lopez-Bigas N, Lopez-Guillermo A, Valencia A, Lopez-Otin C, Campo E, Guigo R. Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia. Genome Res. 2014;24:212–26.PubMedPubMedCentralCrossRef
18.
go back to reference Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.PubMedCrossRef Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.PubMedCrossRef
19.
go back to reference Alves MG, Perez-Sayans M, Padin-Iruegas ME, Reboiras-Lopez MD, Suarez-Penaranda JM, Lopez-Lopez R, Carta CF, Issa JS, Garcia-Garcia A, Almeida JD. Comparison of RNA extraction methods for molecular analysis of oral cytology. Acta Stomatol Croat. 2016;50:108–15.PubMedPubMedCentralCrossRef Alves MG, Perez-Sayans M, Padin-Iruegas ME, Reboiras-Lopez MD, Suarez-Penaranda JM, Lopez-Lopez R, Carta CF, Issa JS, Garcia-Garcia A, Almeida JD. Comparison of RNA extraction methods for molecular analysis of oral cytology. Acta Stomatol Croat. 2016;50:108–15.PubMedPubMedCentralCrossRef
20.
go back to reference Li D, Ren W, Wang X, Wang F, Gao Y, Ning Q, Han Y, Song T, Lu S. A modified method using TRIzol reagent and liquid nitrogen produces high-quality RNA from rat pancreas. Appl Biochem Biotechnol. 2009;158:253–61.PubMedCrossRef Li D, Ren W, Wang X, Wang F, Gao Y, Ning Q, Han Y, Song T, Lu S. A modified method using TRIzol reagent and liquid nitrogen produces high-quality RNA from rat pancreas. Appl Biochem Biotechnol. 2009;158:253–61.PubMedCrossRef
21.
go back to reference Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650–67.PubMedPubMedCentralCrossRef Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650–67.PubMedPubMedCentralCrossRef
22.
go back to reference da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.PubMedCrossRef da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.PubMedCrossRef
23.
go back to reference Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, Livstone M, Oughtred R, Lackner DH, Bahler J, Wood V, Dolinski K, Tyers M. The BioGRID interaction database: 2008 update. Nucleic Acids Res. 2008;36:D637–40.PubMedCrossRef Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, Livstone M, Oughtred R, Lackner DH, Bahler J, Wood V, Dolinski K, Tyers M. The BioGRID interaction database: 2008 update. Nucleic Acids Res. 2008;36:D637–40.PubMedCrossRef
24.
go back to reference Vastrik I, D’Eustachio P, Schmidt E, Gopinath G, Croft D, de Bono B, Gillespie M, Jassal B, Lewis S, Matthews L, Wu G, Birney E, Stein L. Reactome: a knowledge base of biologic pathways and processes. Genome Biol. 2007;8:R39.PubMedPubMedCentralCrossRef Vastrik I, D’Eustachio P, Schmidt E, Gopinath G, Croft D, de Bono B, Gillespie M, Jassal B, Lewis S, Matthews L, Wu G, Birney E, Stein L. Reactome: a knowledge base of biologic pathways and processes. Genome Biol. 2007;8:R39.PubMedPubMedCentralCrossRef
25.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.PubMedPubMedCentralCrossRef Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.PubMedPubMedCentralCrossRef
26.
go back to reference Costentin C, Saveant JM. Heterogeneous molecular catalysis of electrochemical reactions: volcano plots and catalytic Tafel plots. ACS Appl Mater Interfaces. 2017;9:19894–9.PubMedCrossRef Costentin C, Saveant JM. Heterogeneous molecular catalysis of electrochemical reactions: volcano plots and catalytic Tafel plots. ACS Appl Mater Interfaces. 2017;9:19894–9.PubMedCrossRef
27.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.PubMedCrossRef Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.PubMedCrossRef
28.
go back to reference Piccolo BD, Graham JL, Kang P, Randolph CE, Shankar K, Yeruva L, Fox R, Robeson MS, Moody B, LeRoith T, Stanhope KL, Adams SH, Havel PJ. Progression of diabetes is associated with changes in the ileal transcriptome and ileal-colon morphology in the UC Davis Type 2 Diabetes Mellitus rat. Physiol Rep. 2021;9: e15102.PubMedPubMedCentralCrossRef Piccolo BD, Graham JL, Kang P, Randolph CE, Shankar K, Yeruva L, Fox R, Robeson MS, Moody B, LeRoith T, Stanhope KL, Adams SH, Havel PJ. Progression of diabetes is associated with changes in the ileal transcriptome and ileal-colon morphology in the UC Davis Type 2 Diabetes Mellitus rat. Physiol Rep. 2021;9: e15102.PubMedPubMedCentralCrossRef
29.
go back to reference Gorelik A, Liu F, Illes K, Nagar B. Crystal structure of the human alkaline sphingomyelinase provides insights into substrate recognition. J Biol Chem. 2017;292:7087–94.PubMedPubMedCentralCrossRef Gorelik A, Liu F, Illes K, Nagar B. Crystal structure of the human alkaline sphingomyelinase provides insights into substrate recognition. J Biol Chem. 2017;292:7087–94.PubMedPubMedCentralCrossRef
30.
go back to reference Zhang S, Wang Y, Chen M, Sun L, Han J, Elena VK, Qiao H. CXCL12 methylation-mediated epigenetic regulation of gene expression in papillary thyroid carcinoma. Sci Rep. 2017;7:44033.PubMedPubMedCentralCrossRef Zhang S, Wang Y, Chen M, Sun L, Han J, Elena VK, Qiao H. CXCL12 methylation-mediated epigenetic regulation of gene expression in papillary thyroid carcinoma. Sci Rep. 2017;7:44033.PubMedPubMedCentralCrossRef
31.
go back to reference Ding L, Liang XG, Zhu DY, Lou YJ. Icariin promotes expression of PGC-1alpha, PPARalpha, and NRF-1 during cardiomyocyte differentiation of murine embryonic stem cells in vitro. Acta Pharmacol Sin. 2007;28:1541–9.PubMedCrossRef Ding L, Liang XG, Zhu DY, Lou YJ. Icariin promotes expression of PGC-1alpha, PPARalpha, and NRF-1 during cardiomyocyte differentiation of murine embryonic stem cells in vitro. Acta Pharmacol Sin. 2007;28:1541–9.PubMedCrossRef
32.
go back to reference Ding L, Liang XG, Lou YJ. Time-dependence of cardiomyocyte differentiation disturbed by peroxisome proliferator-activated receptor alpha inhibitor GW6471 in murine embryonic stem cells in vitro. Acta Pharmacol Sin. 2007;28:634–42.PubMedCrossRef Ding L, Liang XG, Lou YJ. Time-dependence of cardiomyocyte differentiation disturbed by peroxisome proliferator-activated receptor alpha inhibitor GW6471 in murine embryonic stem cells in vitro. Acta Pharmacol Sin. 2007;28:634–42.PubMedCrossRef
33.
go back to reference Zhong X, Xiu LL, Wei GH, Liu YY, Su L, Cao XP, Li YB, Xiao HP. Bezafibrate enhances proliferation and differentiation of osteoblastic MC3T3-E1 cells via AMPK and eNOS activation. Acta Pharmacol Sin. 2011;32:591–600.PubMedPubMedCentralCrossRef Zhong X, Xiu LL, Wei GH, Liu YY, Su L, Cao XP, Li YB, Xiao HP. Bezafibrate enhances proliferation and differentiation of osteoblastic MC3T3-E1 cells via AMPK and eNOS activation. Acta Pharmacol Sin. 2011;32:591–600.PubMedPubMedCentralCrossRef
34.
go back to reference Yu XT, Xu YF, Huang YF, Qu C, Xu LQ, Su ZR, Zeng HF, Zheng L, Yi TG, Li HL, Chen JP, Zhang XJ. Berberrubine attenuates mucosal lesions and inflammation in dextran sodium sulfate-induced colitis in mice. PLoS ONE. 2018;13: e0194069.PubMedPubMedCentralCrossRef Yu XT, Xu YF, Huang YF, Qu C, Xu LQ, Su ZR, Zeng HF, Zheng L, Yi TG, Li HL, Chen JP, Zhang XJ. Berberrubine attenuates mucosal lesions and inflammation in dextran sodium sulfate-induced colitis in mice. PLoS ONE. 2018;13: e0194069.PubMedPubMedCentralCrossRef
35.
go back to reference Matsuo Y, Miyoshi Y, Okada S, Satoh E. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri. Biosci Microbiota Food Health. 2012;31:93–102.PubMedPubMedCentralCrossRef Matsuo Y, Miyoshi Y, Okada S, Satoh E. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri. Biosci Microbiota Food Health. 2012;31:93–102.PubMedPubMedCentralCrossRef
36.
go back to reference Jiang G, Wang P, Wang W, Li W, Dai L, Chen K. Annexin A13 promotes tumor cell invasion in vitro and is associated with metastasis in human colorectal cancer. Oncotarget. 2017;8:21663–73.PubMedPubMedCentralCrossRef Jiang G, Wang P, Wang W, Li W, Dai L, Chen K. Annexin A13 promotes tumor cell invasion in vitro and is associated with metastasis in human colorectal cancer. Oncotarget. 2017;8:21663–73.PubMedPubMedCentralCrossRef
37.
go back to reference Ramon-Krauel M, Pentinat T, Bloks VW, Cebria J, Ribo S, Perez-Wienese R, Vila M, Palacios-Marin I, Fernandez-Perez A, Vallejo M, Tellez N, Rodriguez MA, Yanes O, Lerin C, Diaz R, Plosch T, Tietge UJF, Jimenez-Chillaron JC. Epigenetic programming at the Mogat1 locus may link neonatal overnutrition with long-term hepatic steatosis and insulin resistance. FASEB J. 2018;32(11):6025–37.CrossRef Ramon-Krauel M, Pentinat T, Bloks VW, Cebria J, Ribo S, Perez-Wienese R, Vila M, Palacios-Marin I, Fernandez-Perez A, Vallejo M, Tellez N, Rodriguez MA, Yanes O, Lerin C, Diaz R, Plosch T, Tietge UJF, Jimenez-Chillaron JC. Epigenetic programming at the Mogat1 locus may link neonatal overnutrition with long-term hepatic steatosis and insulin resistance. FASEB J. 2018;32(11):6025–37.CrossRef
38.
go back to reference Hui DY. Group 1B phospholipase A2 in metabolic and inflammatory disease modulation. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864:784–8.PubMedCrossRef Hui DY. Group 1B phospholipase A2 in metabolic and inflammatory disease modulation. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864:784–8.PubMedCrossRef
39.
go back to reference Erbilgin A, Siemers N, Kayne P, Yang WP, Berliner J, Lusis AJ. Gene expression analyses of mouse aortic endothelium in response to atherogenic stimuli. Arterioscler Thromb Vasc Biol. 2013;33:2509–17.PubMedPubMedCentralCrossRef Erbilgin A, Siemers N, Kayne P, Yang WP, Berliner J, Lusis AJ. Gene expression analyses of mouse aortic endothelium in response to atherogenic stimuli. Arterioscler Thromb Vasc Biol. 2013;33:2509–17.PubMedPubMedCentralCrossRef
40.
go back to reference Zhang Y, Feng J, Yong J, Sun J. Zhang H [Experimental study on H2-Ab1 gene expression in the nasal mucosa of mice with allergic rhinitis]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2014;28:327–31.PubMed Zhang Y, Feng J, Yong J, Sun J. Zhang H [Experimental study on H2-Ab1 gene expression in the nasal mucosa of mice with allergic rhinitis]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2014;28:327–31.PubMed
42.
go back to reference Lim W, Jeong W, Kim J, Ka H, Bazer FW, Han JY, Song G. Differential expression of secreted phosphoprotein 1 in response to estradiol-17beta and in ovarian tumors in chickens. Biochem Biophys Res Commun. 2012;422:494–500.PubMedCrossRef Lim W, Jeong W, Kim J, Ka H, Bazer FW, Han JY, Song G. Differential expression of secreted phosphoprotein 1 in response to estradiol-17beta and in ovarian tumors in chickens. Biochem Biophys Res Commun. 2012;422:494–500.PubMedCrossRef
Metadata
Title
Transcriptome analysis of intestine from alk-SMase knockout mice reveals the effect of alk-SMase
Authors
Jiang Zhu
Lingqi Wang
Zhongwu Guo
Tao Zhang
Ping Zhang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02764-y

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine