Skip to main content
Top
Published in: Journal of Neurology 5/2012

01-05-2012 | Original Communication

Transcranial sonography in pantothenate kinase-associated neurodegeneration

Authors: Vladimir S. Kostić, Marina Svetel, Milija Mijajlović, Aleksandra Pavlović, Milica Ječmenica-Lukić, Dušan Kozić

Published in: Journal of Neurology | Issue 5/2012

Login to get access

Abstract

After it was reported that increased tissue iron concentrations were associated with increased echogenicity of the substantia nigra (SN) obtained with transcranial sonography (TCS) in animal and postmortem studies, our goal was to use this method in a disorder characterized with iron accumulation in human brain tissue. Therefore, magnetic resonance imaging (MRI) and TCS were conducted in 5 unrelated patients with pantothenate kinase-associated neurodegeneration (PKAN), caused by PANK2 mutations. All patients had an eye of the tiger sign. Hypointense lesions on the T2-weighted MRI images were restricted to the globus pallidus (GP) and SN. TCS also revealed bilateral hyperechogenicity restricted to the LN and SN, with normal DTV values. Both TCS and MRI studies in PKAN patients are in accordance with the pathological findings that accumulation of iron, even in advanced cases, is restricted to the GP and SN, suggesting selective involvement of these structures.
Literature
1.
go back to reference Becker G, Seufert J, Bogdahn U, Reichmann H, Reiners K (1995) Degeneration of substantia nigra in chronic Parkinsonʼs disease visualized by transcranial color-coded real-time sonography. Neurology 45:182–184PubMedCrossRef Becker G, Seufert J, Bogdahn U, Reichmann H, Reiners K (1995) Degeneration of substantia nigra in chronic Parkinsonʼs disease visualized by transcranial color-coded real-time sonography. Neurology 45:182–184PubMedCrossRef
2.
go back to reference Berg D, Siefker C, Becker G (2001) Echogenicity of the substantia nigra in Parkinsonʼs disease and its relation to clinical findings. J Neurol 248:684–689PubMedCrossRef Berg D, Siefker C, Becker G (2001) Echogenicity of the substantia nigra in Parkinsonʼs disease and its relation to clinical findings. J Neurol 248:684–689PubMedCrossRef
3.
go back to reference Walter U, Wittstock M, Benecke R, Dressler D (2002) Substantia nigra echogenicity is normal in non-extrapyramidal cerebral disorders but increased in Parkinsonʼs disease. J Neural Transm 109:191–196PubMedCrossRef Walter U, Wittstock M, Benecke R, Dressler D (2002) Substantia nigra echogenicity is normal in non-extrapyramidal cerebral disorders but increased in Parkinsonʼs disease. J Neural Transm 109:191–196PubMedCrossRef
4.
go back to reference Berg D, Godau J, Walter U (2008) Transcranial sonography in movement disorders. Lancet Neurol 7:1044–1053PubMedCrossRef Berg D, Godau J, Walter U (2008) Transcranial sonography in movement disorders. Lancet Neurol 7:1044–1053PubMedCrossRef
5.
go back to reference Skoloudík D, Walter U (2010) Method and validity of transcranial sonography in movement disorders. Int Rev Neurobiol 90:7–34PubMedCrossRef Skoloudík D, Walter U (2010) Method and validity of transcranial sonography in movement disorders. Int Rev Neurobiol 90:7–34PubMedCrossRef
6.
go back to reference Berg D, Becker G, Zeiler B et al (1999) Vulnerability of the nigrostriatal system as detected by transcranial ultrasound. Neurology 53:1026–1031PubMedCrossRef Berg D, Becker G, Zeiler B et al (1999) Vulnerability of the nigrostriatal system as detected by transcranial ultrasound. Neurology 53:1026–1031PubMedCrossRef
7.
go back to reference Berg D, Roggendorf W, Schroder U et al (2002) Echogenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch Neurol 59:999–1005PubMedCrossRef Berg D, Roggendorf W, Schroder U et al (2002) Echogenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch Neurol 59:999–1005PubMedCrossRef
8.
go back to reference Hochstrasser H, Bauer P, Walter U et al (2004) Ceruloplasmin gene variations and substantia nigra hyperechogenicity in Parkinson disease. Neurology 63:1912–1917PubMedCrossRef Hochstrasser H, Bauer P, Walter U et al (2004) Ceruloplasmin gene variations and substantia nigra hyperechogenicity in Parkinson disease. Neurology 63:1912–1917PubMedCrossRef
9.
go back to reference Berg D, Hochstrasser H, Schweitzer KJ, Riess O (2006) Disturbance of iron metabolism in Parkinsonʼs disease—ultrasonography as a biomarker. Neurotoxic Res 9:1–13CrossRef Berg D, Hochstrasser H, Schweitzer KJ, Riess O (2006) Disturbance of iron metabolism in Parkinsonʼs disease—ultrasonography as a biomarker. Neurotoxic Res 9:1–13CrossRef
10.
go back to reference Berg D, Godau J, Riederer P, Gerlach M, Arzbetrger T (2010) Microglia activation is related to substantia nigra echogenicity. J Neural Transm 117:1287–1292PubMedCrossRef Berg D, Godau J, Riederer P, Gerlach M, Arzbetrger T (2010) Microglia activation is related to substantia nigra echogenicity. J Neural Transm 117:1287–1292PubMedCrossRef
11.
go back to reference Hayflick SJ, Westaway SK, Levinson B et al (2003) Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 348:33–40PubMedCrossRef Hayflick SJ, Westaway SK, Levinson B et al (2003) Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 348:33–40PubMedCrossRef
12.
go back to reference Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ (2001) A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 28:345–349PubMedCrossRef Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ (2001) A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 28:345–349PubMedCrossRef
13.
go back to reference Hartig MB, Hortnagel K, Garavaglia B et al (2006) Genotypic and phenotypic spectrum of PANK2 mutations in patients with neurodegeneration with brain iron accumulation. Ann Neurol 59:248–256PubMedCrossRef Hartig MB, Hortnagel K, Garavaglia B et al (2006) Genotypic and phenotypic spectrum of PANK2 mutations in patients with neurodegeneration with brain iron accumulation. Ann Neurol 59:248–256PubMedCrossRef
14.
go back to reference Mijajlović M, Petrović I, Stojković T, Svetel M, Stefanova E, Kostić VS (2008) Transcranial parenchymal sonography in Parkinson’s disease. Vojnosanit Pregl 65:601–605PubMedCrossRef Mijajlović M, Petrović I, Stojković T, Svetel M, Stefanova E, Kostić VS (2008) Transcranial parenchymal sonography in Parkinson’s disease. Vojnosanit Pregl 65:601–605PubMedCrossRef
16.
go back to reference Gregory A, Hayflick SJ (2005) Neurodegeneration with brain iron accumulation. Folia Neuropathol 43:286–296PubMed Gregory A, Hayflick SJ (2005) Neurodegeneration with brain iron accumulation. Folia Neuropathol 43:286–296PubMed
17.
go back to reference Berg D, Grote C, Rausch WD et al (1999) Iron accumulation in the substantia nigra in rats visualized by ultrasound. Ultrasound Med Biol 25:901–904PubMedCrossRef Berg D, Grote C, Rausch WD et al (1999) Iron accumulation in the substantia nigra in rats visualized by ultrasound. Ultrasound Med Biol 25:901–904PubMedCrossRef
18.
go back to reference Zecca L, Berg D, Arzberger T et al (2005) In vivo detection of iron and neuromelanin by transcranial sonography: a new approach for early detection of substantia nigra damage. Mov Disord 20:1278–1285PubMedCrossRef Zecca L, Berg D, Arzberger T et al (2005) In vivo detection of iron and neuromelanin by transcranial sonography: a new approach for early detection of substantia nigra damage. Mov Disord 20:1278–1285PubMedCrossRef
19.
go back to reference Spatz H (1922) Uber des Eisenmachweiss im Gehirn besonders in Zentren des extra-pyramidalmotorischen Systems. Z Gesamte Neurol Psychiatr 77:261CrossRef Spatz H (1922) Uber des Eisenmachweiss im Gehirn besonders in Zentren des extra-pyramidalmotorischen Systems. Z Gesamte Neurol Psychiatr 77:261CrossRef
20.
go back to reference Swaiman KF (1991) Hallervorden-Spatz syndrome and iron brain metabolism. Arch Neurol 48:1285–1293PubMedCrossRef Swaiman KF (1991) Hallervorden-Spatz syndrome and iron brain metabolism. Arch Neurol 48:1285–1293PubMedCrossRef
21.
go back to reference Schneider SA, Hardy J, Bhatia KP (2009) Iron accumulation in syndromes of neurodegeneration with brain iron accumulation 1 and 2: causative or consequential? J Neurol Neurosurg Psychiatry 80:589–590PubMedCrossRef Schneider SA, Hardy J, Bhatia KP (2009) Iron accumulation in syndromes of neurodegeneration with brain iron accumulation 1 and 2: causative or consequential? J Neurol Neurosurg Psychiatry 80:589–590PubMedCrossRef
22.
23.
go back to reference Mutoh K, Okuno T, Ito M et al (1988) MR imaging of a group I case of Hallervorden-Spatz disease. J Comput Assist Tomogr 12:851–853PubMedCrossRef Mutoh K, Okuno T, Ito M et al (1988) MR imaging of a group I case of Hallervorden-Spatz disease. J Comput Assist Tomogr 12:851–853PubMedCrossRef
24.
go back to reference Sethi KD, Adams RJ, Loring DW, Gammal T (1988) Hallervorden-Spatz syndrome: clinical and magnetic resonance imaging correlations. Ann Neurol 24:692–694PubMedCrossRef Sethi KD, Adams RJ, Loring DW, Gammal T (1988) Hallervorden-Spatz syndrome: clinical and magnetic resonance imaging correlations. Ann Neurol 24:692–694PubMedCrossRef
25.
go back to reference McNeill A, Birchall D, Hayflick SJ et al (2008) T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology 70:1614–1619PubMedCrossRef McNeill A, Birchall D, Hayflick SJ et al (2008) T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology 70:1614–1619PubMedCrossRef
26.
go back to reference Lee JH, Kim DS, Baik SK, Nam SO (2010) Nigropallidal iron accumulation in pantothenate kinase-associated neurodegeneration demonstrated by susceptibility-weighted imaging. J Neurol 257:661–662PubMedCrossRef Lee JH, Kim DS, Baik SK, Nam SO (2010) Nigropallidal iron accumulation in pantothenate kinase-associated neurodegeneration demonstrated by susceptibility-weighted imaging. J Neurol 257:661–662PubMedCrossRef
27.
go back to reference Hayflick SJ, Penzien JM, Michi W, Sharif UM, Rosman NP, Wheeler PG (2001) Cranial MRI changes may precede symptoms in Hallervorden-Spatz syndrome. Pediatr Neurol 25:166–169PubMedCrossRef Hayflick SJ, Penzien JM, Michi W, Sharif UM, Rosman NP, Wheeler PG (2001) Cranial MRI changes may precede symptoms in Hallervorden-Spatz syndrome. Pediatr Neurol 25:166–169PubMedCrossRef
28.
go back to reference Hayflick SJ, Hartman M, Coryell J, Gitschier J, Rowley H (2006) Brain MRI in Neurodegeneration with brain iron accumulation with and without PANK2 mutations. Am J Neuroradiol 27:1230–1233PubMed Hayflick SJ, Hartman M, Coryell J, Gitschier J, Rowley H (2006) Brain MRI in Neurodegeneration with brain iron accumulation with and without PANK2 mutations. Am J Neuroradiol 27:1230–1233PubMed
29.
go back to reference Bruggemann N, Hagenah J, Reetz K et al (2010) Recessively inherited parkinsonism: effect of ATP13A2 mutations on the clinical and neuroimaging data. Arch Neurol 67:1357–1363PubMedCrossRef Bruggemann N, Hagenah J, Reetz K et al (2010) Recessively inherited parkinsonism: effect of ATP13A2 mutations on the clinical and neuroimaging data. Arch Neurol 67:1357–1363PubMedCrossRef
30.
Metadata
Title
Transcranial sonography in pantothenate kinase-associated neurodegeneration
Authors
Vladimir S. Kostić
Marina Svetel
Milija Mijajlović
Aleksandra Pavlović
Milica Ječmenica-Lukić
Dušan Kozić
Publication date
01-05-2012
Publisher
Springer-Verlag
Published in
Journal of Neurology / Issue 5/2012
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-011-6294-4

Other articles of this Issue 5/2012

Journal of Neurology 5/2012 Go to the issue