Skip to main content
Top
Published in: Radiation Oncology 1/2020

Open Access 01-12-2020 | Glioma | Research

Forecasting tumor and vasculature response dynamics to radiation therapy via image based mathematical modeling

Authors: David A. Hormuth II, Angela M. Jarrett, Thomas E. Yankeelov

Published in: Radiation Oncology | Issue 1/2020

Login to get access

Abstract

Background

Intra-and inter-tumoral heterogeneity in growth dynamics and vascularity influence tumor response to radiation therapy. Quantitative imaging techniques capture these dynamics non-invasively, and these data can initialize and constrain predictive models of response on an individual basis.

Methods

We have developed a family of 10 biologically-based mathematical models describing the spatiotemporal dynamics of tumor volume fraction, blood volume fraction, and response to radiation therapy. To evaluate this family of models, rats (n = 13) with C6 gliomas were imaged with magnetic resonance imaging (MRI) three times before, and four times following a single fraction of 20 Gy or 40 Gy whole brain irradiation. The first five 3D time series data of tumor volume fraction, estimated from diffusion-weighted (DW-) MRI, and blood volume fraction, estimated from dynamic contrast-enhanced (DCE-) MRI, were used to calibrate tumor-specific model parameters. The most parsimonious and well calibrated of the 10 models, selected using the Akaike information criterion, was then utilized to predict future growth and response at the final two imaging time points. Model predictions were compared at the global level (percent error in tumor volume, and Dice coefficient) as well as at the local or voxel level (concordance correlation coefficient).

Result

The selected model resulted in < 12% error in tumor volume predictions, strong spatial agreement between predicted and observed tumor volumes (Dice coefficient > 0.74), and high level of agreement at the voxel level between the predicted and observed tumor volume fraction and blood volume fraction (concordance correlation coefficient > 0.77 and > 0.65, respectively).

Conclusions

This study demonstrates that serial quantitative MRI data collected before and following radiation therapy can be used to accurately predict tumor and vasculature response with a biologically-based mathematical model that is calibrated on an individual basis. To the best of our knowledge, this is the first effort to characterize the tumor and vasculature response to radiation therapy temporally and spatially using imaging-driven mathematical models.
Literature
1.
go back to reference Connell PP, Hellman S. Advances in radiotherapy and implications for the next century: a historical perspective. Cancer Res. 2009;69(2):383–92.PubMedCrossRef Connell PP, Hellman S. Advances in radiotherapy and implications for the next century: a historical perspective. Cancer Res. 2009;69(2):383–92.PubMedCrossRef
2.
go back to reference Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013;310(17):1842–50.PubMedCrossRef Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013;310(17):1842–50.PubMedCrossRef
3.
go back to reference Giese A, Bjerkvig R, Berens ME, Westphal M. Cost of migration: invasion of malignant Gliomas and implications for treatment. J Clin Oncol. 2003;21(8):1624–36.PubMedCrossRef Giese A, Bjerkvig R, Berens ME, Westphal M. Cost of migration: invasion of malignant Gliomas and implications for treatment. J Clin Oncol. 2003;21(8):1624–36.PubMedCrossRef
4.
go back to reference Jones KM, Michel KA, Bankson JA, Fuller CD, Klopp AH, Venkatesan AM. Emerging magnetic resonance imaging Technologies for Radiation Therapy Planning and Response Assessment. Int J Radiat Oncol Biol Phys. 2018;101(5):1046–56.PubMedCrossRef Jones KM, Michel KA, Bankson JA, Fuller CD, Klopp AH, Venkatesan AM. Emerging magnetic resonance imaging Technologies for Radiation Therapy Planning and Response Assessment. Int J Radiat Oncol Biol Phys. 2018;101(5):1046–56.PubMedCrossRef
5.
go back to reference Hormuth DA, Weis JA, Barnes S, Miga MI, Quaranta V, Yankeelov TE. Biophysical Modeling of In Vivo Glioma Response After Whole-Brain Radiation Therapy in a Murine Model of Brain Cancer. Int J Radiat Oncol. 2018;100(5):1270–9.CrossRef Hormuth DA, Weis JA, Barnes S, Miga MI, Quaranta V, Yankeelov TE. Biophysical Modeling of In Vivo Glioma Response After Whole-Brain Radiation Therapy in a Murine Model of Brain Cancer. Int J Radiat Oncol. 2018;100(5):1270–9.CrossRef
6.
go back to reference Rockne RC, Trister AD, Jacobs J, Hawkins-Daarud AJ, Neal ML, Hendrickson K, Mrugala MM, Rockhill JK, Kinahan P, Krohn KA, et al. A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using (18)F-FMISO-PET. J R Soc Interface. 2015;12(103):20141174.PubMedPubMedCentralCrossRef Rockne RC, Trister AD, Jacobs J, Hawkins-Daarud AJ, Neal ML, Hendrickson K, Mrugala MM, Rockhill JK, Kinahan P, Krohn KA, et al. A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using (18)F-FMISO-PET. J R Soc Interface. 2015;12(103):20141174.PubMedPubMedCentralCrossRef
7.
go back to reference Sunassee ED, Tan D, Ji N, Brady R, Moros EG, Caudell JJ, Yartsev S, Enderling H. Proliferation saturation index in an adaptive Bayesian approach to predict patient-specific radiotherapy responses. Int J Radiat Biol. 2019;95:1421–6 Taylor & Francis.PubMedCrossRefPubMedCentral Sunassee ED, Tan D, Ji N, Brady R, Moros EG, Caudell JJ, Yartsev S, Enderling H. Proliferation saturation index in an adaptive Bayesian approach to predict patient-specific radiotherapy responses. Int J Radiat Biol. 2019;95:1421–6 Taylor & Francis.PubMedCrossRefPubMedCentral
8.
go back to reference Prokopiou S, Moros EG, Poleszczuk J, Caudell J, Torres-Roca JF, Latifi K, Lee JK, Myerson R, Harrison LB, Enderling H. A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation. Radiat Oncol. 2015;10(1):1–8.CrossRef Prokopiou S, Moros EG, Poleszczuk J, Caudell J, Torres-Roca JF, Latifi K, Lee JK, Myerson R, Harrison LB, Enderling H. A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation. Radiat Oncol. 2015;10(1):1–8.CrossRef
9.
go back to reference Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, DeGroot J, Wick W, Gilbert MR, Lassman AB, et al. Updated response assessment criteria for high-grade Gliomas: response assessment in Neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.PubMedCrossRef Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, DeGroot J, Wick W, Gilbert MR, Lassman AB, et al. Updated response assessment criteria for high-grade Gliomas: response assessment in Neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.PubMedCrossRef
10.
go back to reference Hormuth DA II, Sorace AG, Virostko J, Abramson RG, Bhujwalla ZM, Enriquez-Navas P, Gillies R, Hazle JD, Mason RP, Quarles CC, et al. Translating preclinical MRI methods to clinical oncology. J Magn Reson Imaging. 2019;50:1377–92 John Wiley & Sons, Ltd.PubMedCrossRefPubMedCentral Hormuth DA II, Sorace AG, Virostko J, Abramson RG, Bhujwalla ZM, Enriquez-Navas P, Gillies R, Hazle JD, Mason RP, Quarles CC, et al. Translating preclinical MRI methods to clinical oncology. J Magn Reson Imaging. 2019;50:1377–92 John Wiley & Sons, Ltd.PubMedCrossRefPubMedCentral
11.
go back to reference Hamstra DA, Galban CJ, Meyer CR, Johnson TD, Sundgren PC, Tsien C, Lawrence TS, Junck L, Ross DJ, Rehemtulla A, et al. Functional diffusion map as an early imaging biomarker for high-grade glioma: correlation with conventional radiologic response and overall survival. J Clin Oncol. 2008;26(20):3387–94 United States.PubMedPubMedCentralCrossRef Hamstra DA, Galban CJ, Meyer CR, Johnson TD, Sundgren PC, Tsien C, Lawrence TS, Junck L, Ross DJ, Rehemtulla A, et al. Functional diffusion map as an early imaging biomarker for high-grade glioma: correlation with conventional radiologic response and overall survival. J Clin Oncol. 2008;26(20):3387–94 United States.PubMedPubMedCentralCrossRef
12.
go back to reference Zhang J, Liu H, Tong H, Wang S, Yang Y, Liu G, Zhang W. Clinical applications of contrast-enhanced perfusion MRI techniques in Gliomas: recent advances and current challenges. Contrast Media Mol Imaging. 2017;2017:7064120.PubMedPubMedCentral Zhang J, Liu H, Tong H, Wang S, Yang Y, Liu G, Zhang W. Clinical applications of contrast-enhanced perfusion MRI techniques in Gliomas: recent advances and current challenges. Contrast Media Mol Imaging. 2017;2017:7064120.PubMedPubMedCentral
13.
15.
go back to reference Li X, Abramson RG, Arlinghaus LR, Kang H, Chakravarthy AB, Abramson VG, Farley J, Mayer IA, Kelley MC, Meszoely IM, et al. Multiparametric magnetic resonance imaging for predicting pathological response after the first cycle of Neoadjuvant chemotherapy in breast Cancer. Invest Radiol. 2015;50(4):195–204.PubMedPubMedCentralCrossRef Li X, Abramson RG, Arlinghaus LR, Kang H, Chakravarthy AB, Abramson VG, Farley J, Mayer IA, Kelley MC, Meszoely IM, et al. Multiparametric magnetic resonance imaging for predicting pathological response after the first cycle of Neoadjuvant chemotherapy in breast Cancer. Invest Radiol. 2015;50(4):195–204.PubMedPubMedCentralCrossRef
16.
go back to reference Roque T, Risser L, Kersemans V, Smart S, Allen D, Kinchesh P, Gilchrist S, Gomes AL, Schnabel JA, Chappell MA. A DCE-MRI driven 3-D reaction-diffusion model of solid tumour growth. IEEE Trans Med Imaging. 2017;37:724–32.CrossRef Roque T, Risser L, Kersemans V, Smart S, Allen D, Kinchesh P, Gilchrist S, Gomes AL, Schnabel JA, Chappell MA. A DCE-MRI driven 3-D reaction-diffusion model of solid tumour growth. IEEE Trans Med Imaging. 2017;37:724–32.CrossRef
17.
go back to reference Hawkins-Daarud A, Rockne RC, Anderson ARA, Swanson KR. Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor. Front Oncol. 2013;3:66.PubMedPubMedCentralCrossRef Hawkins-Daarud A, Rockne RC, Anderson ARA, Swanson KR. Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor. Front Oncol. 2013;3:66.PubMedPubMedCentralCrossRef
18.
go back to reference Gaw N, Hawkins-Daarud A, Hu LS, Yoon H, Wang L, Xu Y, Jackson PR, Singleton KW, Baxter LC, Eschbacher J, et al. Integration of machine learning and mechanistic models accurately predicts variation in cell density of glioblastoma using multiparametric MRI. Sci Rep. 2019;9(1):10063.PubMedPubMedCentralCrossRef Gaw N, Hawkins-Daarud A, Hu LS, Yoon H, Wang L, Xu Y, Jackson PR, Singleton KW, Baxter LC, Eschbacher J, et al. Integration of machine learning and mechanistic models accurately predicts variation in cell density of glioblastoma using multiparametric MRI. Sci Rep. 2019;9(1):10063.PubMedPubMedCentralCrossRef
19.
go back to reference Swan A, Hillen T, Bowman JC, Murtha AD. A patient-specific anisotropic diffusion model for brain tumour spread. Bull Math Biol. 2018;80(5):1259–91.PubMedCrossRef Swan A, Hillen T, Bowman JC, Murtha AD. A patient-specific anisotropic diffusion model for brain tumour spread. Bull Math Biol. 2018;80(5):1259–91.PubMedCrossRef
20.
go back to reference Lipková J, Angelikopoulos P, Wu S, Alberts E, Wiestler B, Diehl C, Preibisch C, Pyka T, Combs SE, Hadjidoukas P, et al. Personalized radiotherapy Design for Glioblastoma: integrating mathematical tumor models, multimodal scans, and Bayesian inference. IEEE Trans Med Imaging. 2019;38(8):1875–84.PubMedCrossRefPubMedCentral Lipková J, Angelikopoulos P, Wu S, Alberts E, Wiestler B, Diehl C, Preibisch C, Pyka T, Combs SE, Hadjidoukas P, et al. Personalized radiotherapy Design for Glioblastoma: integrating mathematical tumor models, multimodal scans, and Bayesian inference. IEEE Trans Med Imaging. 2019;38(8):1875–84.PubMedCrossRefPubMedCentral
21.
go back to reference Unkelbach J, Menze B, Konukoglu E, Dittmann F, Ayache N, Shih HA. Radiotherapy planning for glioblastoma based on a tumor growth model: implications for spatial dose redistribution. Phys Med Biol. 2014;59(3):747.PubMedCrossRef Unkelbach J, Menze B, Konukoglu E, Dittmann F, Ayache N, Shih HA. Radiotherapy planning for glioblastoma based on a tumor growth model: implications for spatial dose redistribution. Phys Med Biol. 2014;59(3):747.PubMedCrossRef
22.
go back to reference Rockne RC, Hawkins-Daarud A, Swanson KR, Sluka JP, Glazier JA, Macklin P, Hormuth DA, Jarrett AM, Lima EABF, Tinsley Oden J, et al. The 2019 mathematical oncology roadmap. Phys Biol. 2019;16(4):41005 IOP Publishing.CrossRef Rockne RC, Hawkins-Daarud A, Swanson KR, Sluka JP, Glazier JA, Macklin P, Hormuth DA, Jarrett AM, Lima EABF, Tinsley Oden J, et al. The 2019 mathematical oncology roadmap. Phys Biol. 2019;16(4):41005 IOP Publishing.CrossRef
23.
go back to reference Hormuth DA II, Weis JA, Barnes SL, Miga MI, Rericha EC, Quaranta V, Yankeelov TE. Predicting in vivo glioma growth with the reaction diffusion equation constrained by quantitative magnetic resonance imaging data. Phys Biol. 2015;12(4):46006.CrossRef Hormuth DA II, Weis JA, Barnes SL, Miga MI, Rericha EC, Quaranta V, Yankeelov TE. Predicting in vivo glioma growth with the reaction diffusion equation constrained by quantitative magnetic resonance imaging data. Phys Biol. 2015;12(4):46006.CrossRef
24.
go back to reference Hormuth DA II, Weis JA, Barnes SL, Miga MI, Rericha EC, Quaranta V, Yankeelov TE. A mechanically coupled reaction–diffusion model that incorporates intra-tumoural heterogeneity to predict in vivo glioma growth. J R Soc Interface. 2017;14:128.CrossRef Hormuth DA II, Weis JA, Barnes SL, Miga MI, Rericha EC, Quaranta V, Yankeelov TE. A mechanically coupled reaction–diffusion model that incorporates intra-tumoural heterogeneity to predict in vivo glioma growth. J R Soc Interface. 2017;14:128.CrossRef
25.
go back to reference Hormuth DA, Jarrett AM, Feng X, Yankeelov TE. Calibrating a predictive model of tumor growth and angiogenesis with quantitative MRI. Ann Biomed Eng. 2019;47(7):1539–51.PubMedCrossRefPubMedCentral Hormuth DA, Jarrett AM, Feng X, Yankeelov TE. Calibrating a predictive model of tumor growth and angiogenesis with quantitative MRI. Ann Biomed Eng. 2019;47(7):1539–51.PubMedCrossRefPubMedCentral
26.
go back to reference Yankeelov TE, Atuegwu N, Hormuth DA, Weis JA, Barnes SL, Miga MI, Rericha EC, Quaranta V. Clinically relevant modeling of tumor growth and treatment response. Sci Transl Med. 2013;5(187):187ps9.PubMedPubMedCentralCrossRef Yankeelov TE, Atuegwu N, Hormuth DA, Weis JA, Barnes SL, Miga MI, Rericha EC, Quaranta V. Clinically relevant modeling of tumor growth and treatment response. Sci Transl Med. 2013;5(187):187ps9.PubMedPubMedCentralCrossRef
27.
go back to reference Douglas BG, Fowler JF. The effect of multiple small doses of x rays on skin reactions in the mouse and a basic interpretation. Radiat Res. 1976;66(2):401–26.PubMedCrossRef Douglas BG, Fowler JF. The effect of multiple small doses of x rays on skin reactions in the mouse and a basic interpretation. Radiat Res. 1976;66(2):401–26.PubMedCrossRef
28.
go back to reference Grassberger C, Paganetti H. Methodologies in the modeling of combined chemo-radiation treatments. Phys Med Biol. 2016;61(21):R344–67.PubMedCrossRef Grassberger C, Paganetti H. Methodologies in the modeling of combined chemo-radiation treatments. Phys Med Biol. 2016;61(21):R344–67.PubMedCrossRef
29.
go back to reference Hormuth D II, Jarrett A, Lima E, McKenna M, Fuentes D, Yankeelov T. Mechanism-based modeling of tumor growth and treatment response constrained by multiparametric imaging data. J Clin Oncol Clin Cancer Inform. 2019;3:1–10. Hormuth D II, Jarrett A, Lima E, McKenna M, Fuentes D, Yankeelov T. Mechanism-based modeling of tumor growth and treatment response constrained by multiparametric imaging data. J Clin Oncol Clin Cancer Inform. 2019;3:1–10.
30.
go back to reference Jarrett AM, Lima EABF, Hormuth DA, McKenna MT, Feng X, Ekrut DA, Resende ACM, Brock A, Yankeelov TE. Mathematical models of tumor cell proliferation: a review of the literature. Expert Rev Anticancer Ther. 2018;18(12):1271–86 Taylor & Francis.PubMedPubMedCentralCrossRef Jarrett AM, Lima EABF, Hormuth DA, McKenna MT, Feng X, Ekrut DA, Resende ACM, Brock A, Yankeelov TE. Mathematical models of tumor cell proliferation: a review of the literature. Expert Rev Anticancer Ther. 2018;18(12):1271–86 Taylor & Francis.PubMedPubMedCentralCrossRef
31.
go back to reference Brüningk S, Powathil G, Ziegenhein P, Ijaz J, Rivens I, Nill S, Chaplain M, Oelfke U, ter Haar G. Combining radiation with hyperthermia: a multiscale model informed by in vitro experiments. J R Soc Interface. 2018;15(138):20170681 Royal Society.PubMedPubMedCentralCrossRef Brüningk S, Powathil G, Ziegenhein P, Ijaz J, Rivens I, Nill S, Chaplain M, Oelfke U, ter Haar G. Combining radiation with hyperthermia: a multiscale model informed by in vitro experiments. J R Soc Interface. 2018;15(138):20170681 Royal Society.PubMedPubMedCentralCrossRef
32.
go back to reference Rutter EM, Stepien TL, Anderies BJ, Plasencia JD, Woolf EC, Scheck AC, Turner GH, Liu Q, Frakes D, Kodibagkar V, et al. Mathematical analysis of Glioma growth in a murine model. Sci Rep. 2017;7(1):2508.PubMedPubMedCentralCrossRef Rutter EM, Stepien TL, Anderies BJ, Plasencia JD, Woolf EC, Scheck AC, Turner GH, Liu Q, Frakes D, Kodibagkar V, et al. Mathematical analysis of Glioma growth in a murine model. Sci Rep. 2017;7(1):2508.PubMedPubMedCentralCrossRef
33.
go back to reference Massey SC, Rockne RC, Hawkins-Daarud A, Gallaher J, Anderson ARA, Canoll P, Swanson KR. Simulating PDGF-driven Glioma growth and invasion in an anatomically accurate brain domain. Bull Math Biol. 2018;80(5):1292–309.PubMedCrossRef Massey SC, Rockne RC, Hawkins-Daarud A, Gallaher J, Anderson ARA, Canoll P, Swanson KR. Simulating PDGF-driven Glioma growth and invasion in an anatomically accurate brain domain. Bull Math Biol. 2018;80(5):1292–309.PubMedCrossRef
34.
go back to reference Hormuth D II, Eldridge SB, Weis J, Miga MI, Yankeelov TE. Mechanically coupled reaction-diffusion model to predict Glioma growth: methodological details. In: von Stechow L, editor. Springer methods and protocols: Cancer systems biology. Springer New York: New York; 2018. p. 225–41.CrossRef Hormuth D II, Eldridge SB, Weis J, Miga MI, Yankeelov TE. Mechanically coupled reaction-diffusion model to predict Glioma growth: methodological details. In: von Stechow L, editor. Springer methods and protocols: Cancer systems biology. Springer New York: New York; 2018. p. 225–41.CrossRef
35.
go back to reference Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumor Biol. 2010;31(4):363–72.CrossRef Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumor Biol. 2010;31(4):363–72.CrossRef
36.
go back to reference Baskar R, Dai J, Wenlong N, Yeo R, Yeoh K-W. Biological response of cancer cells to radiation treatment. Front Mol Biosci. 2014;1:24 Frontiers Media S.A.PubMedPubMedCentralCrossRef Baskar R, Dai J, Wenlong N, Yeo R, Yeoh K-W. Biological response of cancer cells to radiation treatment. Front Mol Biosci. 2014;1:24 Frontiers Media S.A.PubMedPubMedCentralCrossRef
37.
go back to reference Whisenant JG, Ayers GD, Loveless ME, Barnes SL, Colvin DC, Yankeelov TE. Assessing reproducibility of diffusion-weighted magnetic resonance imaging studies in a murine model of HER2+ breast cancer. Magn Reson Imaging. 2014;32(3):245–9.PubMedCrossRef Whisenant JG, Ayers GD, Loveless ME, Barnes SL, Colvin DC, Yankeelov TE. Assessing reproducibility of diffusion-weighted magnetic resonance imaging studies in a murine model of HER2+ breast cancer. Magn Reson Imaging. 2014;32(3):245–9.PubMedCrossRef
38.
go back to reference Atuegwu NC, Colvin DC, Loveless ME, Xu L, Gore JC, Yankeelov TE. Incorporation of diffusion-weighted magnetic resonance imaging data into a simple mathematical model of tumor growth. Phys Med Biol. 2012;57(1):225–40.PubMedPubMedCentralCrossRef Atuegwu NC, Colvin DC, Loveless ME, Xu L, Gore JC, Yankeelov TE. Incorporation of diffusion-weighted magnetic resonance imaging data into a simple mathematical model of tumor growth. Phys Med Biol. 2012;57(1):225–40.PubMedPubMedCentralCrossRef
39.
go back to reference Jarrett A, Hormuth D II, Barnes S, Feng X, Huang W, Yankeelov T. Incorporating drug delivery into an imaging-driven, mechanics-coupled reaction diffusion model for predicting the response of breast cancer to neoadjuvant chemotherapy: theory and preliminary clinical results. Phys Med Biol. 2018;63:10.CrossRef Jarrett A, Hormuth D II, Barnes S, Feng X, Huang W, Yankeelov T. Incorporating drug delivery into an imaging-driven, mechanics-coupled reaction diffusion model for predicting the response of breast cancer to neoadjuvant chemotherapy: theory and preliminary clinical results. Phys Med Biol. 2018;63:10.CrossRef
40.
go back to reference Weis JA, Miga MI, Arlinghaus LR, Li X, Abramson V, Chakravarthy AB, Pendyala P, Yankeelov TE. Predicting the response of breast Cancer to Neoadjuvant therapy using a mechanically coupled reaction-diffusion model. Cancer Res. 2015;75:4697–707.PubMedPubMedCentralCrossRef Weis JA, Miga MI, Arlinghaus LR, Li X, Abramson V, Chakravarthy AB, Pendyala P, Yankeelov TE. Predicting the response of breast Cancer to Neoadjuvant therapy using a mechanically coupled reaction-diffusion model. Cancer Res. 2015;75:4697–707.PubMedPubMedCentralCrossRef
41.
go back to reference Hormuth DA II, Skinner JT, Does MD, Yankeelov TE. A comparison of individual and population-derived vascular input functions for quantitative DCE-MRI in rats. Magn Reson Imaging. 2014;32(4):397–401.PubMedPubMedCentralCrossRef Hormuth DA II, Skinner JT, Does MD, Yankeelov TE. A comparison of individual and population-derived vascular input functions for quantitative DCE-MRI in rats. Magn Reson Imaging. 2014;32(4):397–401.PubMedPubMedCentralCrossRef
42.
go back to reference Stuschke M, Budach V, Budach W, Feldmann HJ, Sack H. Radioresponsiveness, sublethal damage repair and stem cell rate in spheroids from three human tumor lines: comparison with xenograft data. Int J Radiat Oncol Biol Phys. 1992;24:119–26.PubMedCrossRef Stuschke M, Budach V, Budach W, Feldmann HJ, Sack H. Radioresponsiveness, sublethal damage repair and stem cell rate in spheroids from three human tumor lines: comparison with xenograft data. Int J Radiat Oncol Biol Phys. 1992;24:119–26.PubMedCrossRef
43.
go back to reference Akaike H. A new look at the statistical model identification. Automatic Control IEEE Transact. 1974;19:716–23.CrossRef Akaike H. A new look at the statistical model identification. Automatic Control IEEE Transact. 1974;19:716–23.CrossRef
44.
go back to reference Jensen RL. Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol. 2009;92(3):317–35.PubMedCrossRef Jensen RL. Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol. 2009;92(3):317–35.PubMedCrossRef
45.
go back to reference Padhani AR, Krohn KA, Lewis JS, Alber M. Imaging oxygenation of human tumours. Eur Radiol. 2007;17(4):861–72.PubMedCrossRef Padhani AR, Krohn KA, Lewis JS, Alber M. Imaging oxygenation of human tumours. Eur Radiol. 2007;17(4):861–72.PubMedCrossRef
46.
47.
go back to reference Kallman RF, Dorie MJ. Tumor oxygenation and reoxygenation during radiation theraphy: Their importance in predicting tumor response. Int J Radiat Oncol. 1986;12(4):681–5.CrossRef Kallman RF, Dorie MJ. Tumor oxygenation and reoxygenation during radiation theraphy: Their importance in predicting tumor response. Int J Radiat Oncol. 1986;12(4):681–5.CrossRef
48.
go back to reference Alfonso JCL, Berk L. Modeling the effect of intratumoral heterogeneity of radiosensitivity on tumor response over the course of fractionated radiation therapy. Radiat Oncol. 2019;14(1):88.PubMedPubMedCentralCrossRef Alfonso JCL, Berk L. Modeling the effect of intratumoral heterogeneity of radiosensitivity on tumor response over the course of fractionated radiation therapy. Radiat Oncol. 2019;14(1):88.PubMedPubMedCentralCrossRef
49.
go back to reference Sachs RK, Hlatky LR, Hahnfeldt P. Simple ODE models of tumor growth and anti-angiogenic or radiation treatment. Math Comput Model. 2001;33(12–13):1297–305.CrossRef Sachs RK, Hlatky LR, Hahnfeldt P. Simple ODE models of tumor growth and anti-angiogenic or radiation treatment. Math Comput Model. 2001;33(12–13):1297–305.CrossRef
50.
go back to reference Belfatto A, Riboldi M, Ciardo D, Cattani F, Cecconi A, Lazzari R, Jereczek-Fossa BA, Orecchia R, Baroni G, Cerveri P. Modeling the interplay between tumor volume regression and oxygenation in uterine cervical Cancer during radiotherapy treatment. IEEE J Biomed Heal Informatics. 2016;20(2):596–605.CrossRef Belfatto A, Riboldi M, Ciardo D, Cattani F, Cecconi A, Lazzari R, Jereczek-Fossa BA, Orecchia R, Baroni G, Cerveri P. Modeling the interplay between tumor volume regression and oxygenation in uterine cervical Cancer during radiotherapy treatment. IEEE J Biomed Heal Informatics. 2016;20(2):596–605.CrossRef
51.
go back to reference Powathil GG, Adamson DJA, Chaplain MAJ. Towards predicting the response of a solid tumour to chemotherapy and radiotherapy treatments: clinical insights from a computational model. PLOS Comput Biol. 2013;9(7):e1003120 Public Library of Science.PubMedPubMedCentralCrossRef Powathil GG, Adamson DJA, Chaplain MAJ. Towards predicting the response of a solid tumour to chemotherapy and radiotherapy treatments: clinical insights from a computational model. PLOS Comput Biol. 2013;9(7):e1003120 Public Library of Science.PubMedPubMedCentralCrossRef
52.
go back to reference Hormuth D, Jarret A, Wu C, Yankeelov T. Employing quantitative imaging data to personalize mathematical models of the tumor microenvironment and response to therapies. CRUK-AACR Joint Conf Eng Phys Sci Oncol. 2019. Abstract Nr. 44. Hormuth D, Jarret A, Wu C, Yankeelov T. Employing quantitative imaging data to personalize mathematical models of the tumor microenvironment and response to therapies. CRUK-AACR Joint Conf Eng Phys Sci Oncol. 2019. Abstract Nr. 44.
53.
go back to reference Yang Y, Cao M, Sheng K, Gao Y, Chen A, Kamrava M, Lee P, Agazaryan N, Lamb J, Thomas D, et al. Longitudinal diffusion MRI for treatment response assessment: preliminary experience using an MRI-guided tri-cobalt 60 radiotherapy system. Med Phys. 2016;43(3):1369–73.PubMedCrossRefPubMedCentral Yang Y, Cao M, Sheng K, Gao Y, Chen A, Kamrava M, Lee P, Agazaryan N, Lamb J, Thomas D, et al. Longitudinal diffusion MRI for treatment response assessment: preliminary experience using an MRI-guided tri-cobalt 60 radiotherapy system. Med Phys. 2016;43(3):1369–73.PubMedCrossRefPubMedCentral
54.
go back to reference Corradini S, Alongi F, Andratschke N, Belka C, Boldrini L, Cellini F, Debus J, Guckenberger M, Hörner-Rieber J, Lagerwaard FJ, et al. MR-guidance in clinical reality: current treatment challenges and future perspectives. Radiat Oncol. 2019;14(1):92 BioMed Central.PubMedPubMedCentralCrossRef Corradini S, Alongi F, Andratschke N, Belka C, Boldrini L, Cellini F, Debus J, Guckenberger M, Hörner-Rieber J, Lagerwaard FJ, et al. MR-guidance in clinical reality: current treatment challenges and future perspectives. Radiat Oncol. 2019;14(1):92 BioMed Central.PubMedPubMedCentralCrossRef
56.
go back to reference Swanson KR, Rostomily RC, Alvord EC. A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. Br J Cancer. 2008;98(1):113–9.PubMedCrossRef Swanson KR, Rostomily RC, Alvord EC. A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. Br J Cancer. 2008;98(1):113–9.PubMedCrossRef
57.
go back to reference Stupp R, Masonvan den Bent MJ, Weller M, Fisher B, Taphoorn MJB, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N Engl J Med. 2005;352(10):987–96 Boston: Massachusetts Medical Society.CrossRefPubMed Stupp R, Masonvan den Bent MJ, Weller M, Fisher B, Taphoorn MJB, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N Engl J Med. 2005;352(10):987–96 Boston: Massachusetts Medical Society.CrossRefPubMed
Metadata
Title
Forecasting tumor and vasculature response dynamics to radiation therapy via image based mathematical modeling
Authors
David A. Hormuth II
Angela M. Jarrett
Thomas E. Yankeelov
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2020
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1446-2

Other articles of this Issue 1/2020

Radiation Oncology 1/2020 Go to the issue