Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2018

Open Access 01-12-2018 | Research

β-arrestin2 functions as a key regulator in the sympathetic-triggered immunodepression after stroke

Authors: Huan Wang, Qi-Wen Deng, Ai-Ni Peng, Fang-Lan Xing, Lei Zuo, Shuo Li, Zheng-Tian Gu, Fu-Ling Yan

Published in: Journal of Neuroinflammation | Issue 1/2018

Login to get access

Abstract

Background

Stroke-induced immunodeficiency syndrome (SIDS) is regarded as a protective mechanism for secondary inflammatory injury as well as a contributor to infection complications. Although stroke-induced hyperactivation of the sympathetic system is proved to facilitate SIDS, the involved endogenous factors and pathways are largely elusive. In this study, we aim to investigate the function of beta-arrestin-2 (ARRB2) in the sympathetic-mediated SIDS.

Methods

Splenic ARRB2 expression and the sympathetic system activity were detected after establishing transient models of middle cerebral artery occlusion (MCAO). In addition, a correlation between ARRB2 expression and the sympathetic system activity was analyzed using a linear correlation analysis. Any SIDS reflected in monocyte dysfunction was investigated by measuring inflammatory cytokine secretion and neurological deficit scores and infarct volume were tested to assess neurological outcome. Further, ARRB2 expression in the monocytes was knocked down in vitro by siRNAs. Following the stimulation of noradrenaline and lipopolysaccharide, cytokine secretion and the nuclear factor-κB (NF-κB) pathway were evaluated to gain insight into the mechanisms related to the contribution of ARRB2 to adrenergic-induced monocyte dysfunction.

Results

Splenic ARRB2 expression was significantly increased after stroke and also showed a significant positive correlation with the sympathetic system activity. Stroke-induced monocyte dysfunction resulted in an increase of the interleukin-10 (IL-10) level as well as a decrease of the interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels. Also, blockade of adrenergic-activity significantly reversed these cytokine levels, and blockade of adrenergic-activity improved stroke-induced neurological results. However, the improved neurological results had no significant correlation with ARRB2 expression. Furthermore, the in vitro results showed that the deficiency of ARRB2 dramatically repealed adrenergic-induced monocyte dysfunction and the inhibition of NF-κB signaling phosphorylation activity.

Conclusions

ARRB2 is implicated in the sympathetic-triggered SIDS, in particular, monocyte dysfunction after stroke. Accordingly, ARRB2 may be a promising therapeutic target for the immunological management of stroke in a clinic.
Literature
2.
go back to reference Famakin BM. The immune response to acute focal cerebral ischemia and associated post-stroke immunodepression: a focused review. Aging Dis. 2014;5:307–26.PubMedPubMedCentral Famakin BM. The immune response to acute focal cerebral ischemia and associated post-stroke immunodepression: a focused review. Aging Dis. 2014;5:307–26.PubMedPubMedCentral
3.
go back to reference Macrez R, Ali C, Toutirais O, Le MB, Defer G, et al. Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol. 2011;10:471–80.CrossRefPubMed Macrez R, Ali C, Toutirais O, Le MB, Defer G, et al. Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol. 2011;10:471–80.CrossRefPubMed
4.
go back to reference Urra X, Cervera A, Obach V, Climent N, Planas AM, Chamorro A. Monocytes are major players in the prognosis and risk of infection after acute stroke. Stroke. 2009;40:1262–8.CrossRefPubMed Urra X, Cervera A, Obach V, Climent N, Planas AM, Chamorro A. Monocytes are major players in the prognosis and risk of infection after acute stroke. Stroke. 2009;40:1262–8.CrossRefPubMed
5.
go back to reference Urra X, Laredo C, Zhao Y, Amaro S, Rudilosso S, et al. Neuroanatomical correlates of stroke-associated infection and stroke-induced immunodepression. Brain Behav Immun. 2017;60:142–50.CrossRefPubMed Urra X, Laredo C, Zhao Y, Amaro S, Rudilosso S, et al. Neuroanatomical correlates of stroke-associated infection and stroke-induced immunodepression. Brain Behav Immun. 2017;60:142–50.CrossRefPubMed
6.
go back to reference Hoffmann S, Harms H, Ulm L, Nabavi DG, Mackert BM, et al. Stroke-induced immunodepression and dysphagia independently predict stroke-associated pneumonia - The PREDICT study. J Cereb Blood Flow Metab. 2017;37:3671–82.CrossRefPubMed Hoffmann S, Harms H, Ulm L, Nabavi DG, Mackert BM, et al. Stroke-induced immunodepression and dysphagia independently predict stroke-associated pneumonia - The PREDICT study. J Cereb Blood Flow Metab. 2017;37:3671–82.CrossRefPubMed
7.
go back to reference Urra X, Obach V, Chamorro A. Stroke induced immunodepression syndrome: from bench to bedside. Curr Mol Med. 2009;9:195–202.CrossRefPubMed Urra X, Obach V, Chamorro A. Stroke induced immunodepression syndrome: from bench to bedside. Curr Mol Med. 2009;9:195–202.CrossRefPubMed
8.
9.
go back to reference Walter U, Kolbaske S, Patejdl R, Steinhagen V, Abu-Mugheisib M, et al. Insular stroke is associated with acute sympathetic hyperactivation and immunodepression. Eur J Neurol. 2013;20:153–9.CrossRefPubMed Walter U, Kolbaske S, Patejdl R, Steinhagen V, Abu-Mugheisib M, et al. Insular stroke is associated with acute sympathetic hyperactivation and immunodepression. Eur J Neurol. 2013;20:153–9.CrossRefPubMed
10.
go back to reference Chamorro A, Amaro S, Vargas M, Obach V, Cervera A, et al. Catecholamines, infection, and death in acute ischemic stroke. J Neurol Sci. 2007;252:29–35.CrossRefPubMed Chamorro A, Amaro S, Vargas M, Obach V, Cervera A, et al. Catecholamines, infection, and death in acute ischemic stroke. J Neurol Sci. 2007;252:29–35.CrossRefPubMed
11.
go back to reference Liesz A, Ruger H, Purrucker J, Zorn M, Dalpke A, et al. Stress mediators and immune dysfunction in patients with acute cerebrovascular diseases. PLoS ONE. 2013;8:e74839.CrossRefPubMedPubMedCentral Liesz A, Ruger H, Purrucker J, Zorn M, Dalpke A, et al. Stress mediators and immune dysfunction in patients with acute cerebrovascular diseases. PLoS ONE. 2013;8:e74839.CrossRefPubMedPubMedCentral
12.
13.
go back to reference Romer C, Engel O, Winek K, Hochmeister S, Zhang T, et al. Blocking stroke-induced immunodeficiency increases CNS antigen-specific autoreactivity but does not worsen functional outcome after experimental stroke. J Neurosci. 2015;35:7777–94.CrossRefPubMed Romer C, Engel O, Winek K, Hochmeister S, Zhang T, et al. Blocking stroke-induced immunodeficiency increases CNS antigen-specific autoreactivity but does not worsen functional outcome after experimental stroke. J Neurosci. 2015;35:7777–94.CrossRefPubMed
14.
go back to reference Lee MH, Appleton KM, Strungs EG, Kwon JY, Morinelli TA, et al. The conformational signature of beta-arrestin2 predicts its trafficking and signalling functions. Nature. 2016;531:665–8.CrossRefPubMedPubMedCentral Lee MH, Appleton KM, Strungs EG, Kwon JY, Morinelli TA, et al. The conformational signature of beta-arrestin2 predicts its trafficking and signalling functions. Nature. 2016;531:665–8.CrossRefPubMedPubMedCentral
16.
go back to reference Casarini L, Reiter E, Simoni M. Beta-arrestins regulate gonadotropin receptor-mediated cell proliferation and apoptosis by controlling different FSHR or LHCGR intracellular signaling in the hGL5 cell line. Mol Cell Endocrinol. 2016;437:11–21.CrossRefPubMed Casarini L, Reiter E, Simoni M. Beta-arrestins regulate gonadotropin receptor-mediated cell proliferation and apoptosis by controlling different FSHR or LHCGR intracellular signaling in the hGL5 cell line. Mol Cell Endocrinol. 2016;437:11–21.CrossRefPubMed
17.
go back to reference Freedman NJ, Shenoy SK. Regulation of inflammation by beta-arrestins: not just receptor tales. Cell Signal. 2018;41:41–5.CrossRefPubMed Freedman NJ, Shenoy SK. Regulation of inflammation by beta-arrestins: not just receptor tales. Cell Signal. 2018;41:41–5.CrossRefPubMed
18.
go back to reference Sharma D, Malik A, Steury MD, Lucas PC, Parameswaran N. Protective role of beta-arrestin2 in colitis through modulation of T-cell activation. Inflamm Bowel Dis. 2015;21:2766–77.CrossRefPubMedPubMedCentral Sharma D, Malik A, Steury MD, Lucas PC, Parameswaran N. Protective role of beta-arrestin2 in colitis through modulation of T-cell activation. Inflamm Bowel Dis. 2015;21:2766–77.CrossRefPubMedPubMedCentral
19.
go back to reference Prass K, Meisel C, Höflich C, et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med. 2003;198(5):725–36.CrossRefPubMedPubMedCentral Prass K, Meisel C, Höflich C, et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med. 2003;198(5):725–36.CrossRefPubMedPubMedCentral
20.
go back to reference Tureyen K, Bowen K, Liang J, Dempsey RJ, Vemuganti R. Exacerbated brain damage, edema and inflammation in type-2 diabetic mice subjected to focal ischemia. J Neurochem. 2011;116:499–507.CrossRefPubMedPubMedCentral Tureyen K, Bowen K, Liang J, Dempsey RJ, Vemuganti R. Exacerbated brain damage, edema and inflammation in type-2 diabetic mice subjected to focal ischemia. J Neurochem. 2011;116:499–507.CrossRefPubMedPubMedCentral
21.
go back to reference Liu F, Schafer DP, McCullough LD. TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J Neurosci Methods. 2009;179:1–8.CrossRefPubMedPubMedCentral Liu F, Schafer DP, McCullough LD. TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J Neurosci Methods. 2009;179:1–8.CrossRefPubMedPubMedCentral
22.
go back to reference Puchowicz MA, Zechel JL, Valerio J, Emancipator DS, Xu K, et al. Neuroprotection in diet-induced ketotic rat brain after focal ischemia. J Cereb Blood Flow Metab. 2008;28:1907–16.CrossRefPubMedPubMedCentral Puchowicz MA, Zechel JL, Valerio J, Emancipator DS, Xu K, et al. Neuroprotection in diet-induced ketotic rat brain after focal ischemia. J Cereb Blood Flow Metab. 2008;28:1907–16.CrossRefPubMedPubMedCentral
23.
go back to reference Doll DN, Hu H, Sun J, Lewis SE, Simpkins JW, Ren X. Mitochondrial crisis in cerebrovascular endothelial cells opens the blood-brain barrier. Stroke. 2015;46(6):1681–9.CrossRefPubMedPubMedCentral Doll DN, Hu H, Sun J, Lewis SE, Simpkins JW, Ren X. Mitochondrial crisis in cerebrovascular endothelial cells opens the blood-brain barrier. Stroke. 2015;46(6):1681–9.CrossRefPubMedPubMedCentral
24.
go back to reference Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA, Reardon C, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334(6052):98–101.CrossRefPubMedPubMedCentral Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA, Reardon C, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334(6052):98–101.CrossRefPubMedPubMedCentral
25.
go back to reference Chamorro A, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R. The immunology of acute stroke. Nat Rev Neurol. 2012;8:401–10.CrossRefPubMed Chamorro A, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R. The immunology of acute stroke. Nat Rev Neurol. 2012;8:401–10.CrossRefPubMed
26.
go back to reference Liu Q, Jin WN, Liu Y, Shi K, Sun H, Zhang F, et al. Brain Ischemia suppresses immunity in the periphery and brain via different neurogenic innervations. Immunity. 2017;46(3):474–87.CrossRefPubMed Liu Q, Jin WN, Liu Y, Shi K, Sun H, Zhang F, et al. Brain Ischemia suppresses immunity in the periphery and brain via different neurogenic innervations. Immunity. 2017;46(3):474–87.CrossRefPubMed
28.
go back to reference Wang Y, Jin L, Song Y, Zhang M, Shan D, Liu Y, et al. β-arrestin 2 mediates cardiac ischemia-reperfusion injury via inhibiting GPCR-independent cell survival signalling. Cardiovasc Res. 2017;113(13):1615–26.CrossRefPubMed Wang Y, Jin L, Song Y, Zhang M, Shan D, Liu Y, et al. β-arrestin 2 mediates cardiac ischemia-reperfusion injury via inhibiting GPCR-independent cell survival signalling. Cardiovasc Res. 2017;113(13):1615–26.CrossRefPubMed
29.
go back to reference Watari K, Nakaya M, Nishida M, Kim KM, Kurose H. Beta-arrestin2 in infiltrated macrophages inhibits excessive inflammation after myocardial infarction. PLoS ONE. 2013;8:e68351.CrossRefPubMedPubMedCentral Watari K, Nakaya M, Nishida M, Kim KM, Kurose H. Beta-arrestin2 in infiltrated macrophages inhibits excessive inflammation after myocardial infarction. PLoS ONE. 2013;8:e68351.CrossRefPubMedPubMedCentral
30.
go back to reference Fan H, Bitto A, Zingarelli B, Luttrell LM, Borg K, et al. Beta-arrestin 2 negatively regulates sepsis-induced inflammation. Immunology. 2010;130:344–51.CrossRefPubMedPubMedCentral Fan H, Bitto A, Zingarelli B, Luttrell LM, Borg K, et al. Beta-arrestin 2 negatively regulates sepsis-induced inflammation. Immunology. 2010;130:344–51.CrossRefPubMedPubMedCentral
31.
go back to reference Xia R, Hu Z, Sun Y, Chen S, Gu M, et al. Overexpression of beta-arrestin 2 in peripheral blood mononuclear cells of patients with cryptococcal meningitis. J Interferon Cytokine Res. 2010;30:155–62.CrossRefPubMed Xia R, Hu Z, Sun Y, Chen S, Gu M, et al. Overexpression of beta-arrestin 2 in peripheral blood mononuclear cells of patients with cryptococcal meningitis. J Interferon Cytokine Res. 2010;30:155–62.CrossRefPubMed
32.
go back to reference Nuber S, Zabel U, Lorenz K, et al. β-arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature. 2016;531(7596):661–4.CrossRefPubMedPubMedCentral Nuber S, Zabel U, Lorenz K, et al. β-arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature. 2016;531(7596):661–4.CrossRefPubMedPubMedCentral
33.
go back to reference McCulloch L, Smith CJ, McColl BW. Adrenergic-mediated loss of splenic marginal zone B cells contributes to infection susceptibility after stroke. Nat Commun. 2017;8:15051.CrossRefPubMedPubMedCentral McCulloch L, Smith CJ, McColl BW. Adrenergic-mediated loss of splenic marginal zone B cells contributes to infection susceptibility after stroke. Nat Commun. 2017;8:15051.CrossRefPubMedPubMedCentral
34.
35.
go back to reference Liesz A, Zhou W, Na SY, Hammerling GJ, Garbi N, et al. Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke. J Neurosci. 2013;33:17350–62.CrossRefPubMed Liesz A, Zhou W, Na SY, Hammerling GJ, Garbi N, et al. Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke. J Neurosci. 2013;33:17350–62.CrossRefPubMed
36.
go back to reference An C, Shi Y, Li P, Hu X, Gan Y, et al. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol. 2014;115:6–24.CrossRefPubMed An C, Shi Y, Li P, Hu X, Gan Y, et al. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol. 2014;115:6–24.CrossRefPubMed
37.
go back to reference Jin R, Zhu X, Liu L, Nanda A, Granger DN, Li G. Simvastatin attenuates stroke-induced splenic atrophy and lung susceptibility to spontaneous bacterial infection in mice. Stroke. 2013;44:1135–43.CrossRefPubMedPubMedCentral Jin R, Zhu X, Liu L, Nanda A, Granger DN, Li G. Simvastatin attenuates stroke-induced splenic atrophy and lung susceptibility to spontaneous bacterial infection in mice. Stroke. 2013;44:1135–43.CrossRefPubMedPubMedCentral
Metadata
Title
β-arrestin2 functions as a key regulator in the sympathetic-triggered immunodepression after stroke
Authors
Huan Wang
Qi-Wen Deng
Ai-Ni Peng
Fang-Lan Xing
Lei Zuo
Shuo Li
Zheng-Tian Gu
Fu-Ling Yan
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2018
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-018-1142-4

Other articles of this Issue 1/2018

Journal of Neuroinflammation 1/2018 Go to the issue