Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2020

Open Access 01-12-2020 | Endometriosis | Review

Biogenesis and functions of circular RNAs and their role in diseases of the female reproductive system

Authors: Yalan Ma, Ying Xu, Jingshun Zhang, Lianwen Zheng

Published in: Reproductive Biology and Endocrinology | Issue 1/2020

Login to get access

Abstract

A member of the newly discovered RNA family, circular RNA (circRNA) is considered as the intermediate product of by-product splicing or abnormal RNA splicing. With the development of RNA sequencing, circRNA has recently drawn research interest. CircRNA exhibits stability, species conservatism, and tissue cell specificity. It acts as a miRNA sponge in the circRNA-microRNA (miRNA-mRNA axis, which can regulate gene transcription and protein translation. Studies have confirmed that circRNA is ubiquitous in eukaryotic cells, which play an important role in the regulation of human gene expression and participate in the occurrence and development of various human diseases. CircRNA may be closely related to the occurrence and development of female reproductive system diseases. By analyzing the biological functions and mechanism of circRNA, we find that circRNA has certain development prospects as biomarkers of the female reproductive system diseases. The production and degradation of circRNA, biological functions, and their association with the occurrence of diseases of female reproductive system are reviewed in this article.
Literature
1.
go back to reference Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2012;19:141–57.CrossRefPubMed Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2012;19:141–57.CrossRefPubMed
2.
go back to reference Chen L-l. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016;17(4):205–11.CrossRefPubMed Chen L-l. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016;17(4):205–11.CrossRefPubMed
3.
go back to reference Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2016;44:1370–83.CrossRefPubMed Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2016;44:1370–83.CrossRefPubMed
4.
go back to reference Li HM, Lan X, et al. Intriguing circles: Conflicts and controversies in circular RNA research. Wiley Interdiscip Rev RNA. 2019;10(5):e1538.CrossRefPubMed Li HM, Lan X, et al. Intriguing circles: Conflicts and controversies in circular RNA research. Wiley Interdiscip Rev RNA. 2019;10(5):e1538.CrossRefPubMed
6.
go back to reference Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res. 2013;73(18):5609–12.CrossRefPubMed Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res. 2013;73(18):5609–12.CrossRefPubMed
7.
go back to reference Zwingman T, Fujimoto H, Lai LW, et al. Transcription of circular and noncircular forms of Sry in mouse testes. Mol Reprod Dev. 1994;37(4):370.CrossRefPubMed Zwingman T, Fujimoto H, Lai LW, et al. Transcription of circular and noncircular forms of Sry in mouse testes. Mol Reprod Dev. 1994;37(4):370.CrossRefPubMed
8.
go back to reference Qi XL, Zhang DH, Wu N, et al. ceRNA in cancer: possible functions and clinical Implications. Med Genet. 2015;52(10):710–8.CrossRef Qi XL, Zhang DH, Wu N, et al. ceRNA in cancer: possible functions and clinical Implications. Med Genet. 2015;52(10):710–8.CrossRef
9.
go back to reference Qu S, Yang X, Li X, et al. Circular RNA: a new star of noncoding RNAs. Cancer Lett. 2015;365(2):141–8.CrossRefPubMed Qu S, Yang X, Li X, et al. Circular RNA: a new star of noncoding RNAs. Cancer Lett. 2015;365(2):141–8.CrossRefPubMed
10.
go back to reference Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al. Circ-ZNF609 is a Circular RNA that can be translated and functions in Myogenesis. Mol Cell. 2017;66:22–37.CrossRefPubMedPubMedCentral Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al. Circ-ZNF609 is a Circular RNA that can be translated and functions in Myogenesis. Mol Cell. 2017;66:22–37.CrossRefPubMedPubMedCentral
12.
go back to reference Granados-Riveron JT, Aquino-Jarquin G. The complexity of the translation ability of circRNAs. Biochim Biophys Acta. 2016;12:45–1251. Granados-Riveron JT, Aquino-Jarquin G. The complexity of the translation ability of circRNAs. Biochim Biophys Acta. 2016;12:45–1251.
13.
go back to reference Wang KS, Choo OL, Weiner AJ, et al. The viroid-like structure of the hepatitis delta (delta) genome: synthesis of a viral antigen in recombinant bacteria. Prog Clin Biol Res. 1987;234:71–82.14.PubMed Wang KS, Choo OL, Weiner AJ, et al. The viroid-like structure of the hepatitis delta (delta) genome: synthesis of a viral antigen in recombinant bacteria. Prog Clin Biol Res. 1987;234:71–82.14.PubMed
14.
go back to reference Rizzetto M, Canese MG, Arico S, et al. Immunofluorescence detection of new antigen-antibody system (delta/antidelta) associated to hepatitis B virus in liver and in serum of HBsAg carriers. Gut. 1977;18:997–1003.CrossRefPubMedPubMedCentral Rizzetto M, Canese MG, Arico S, et al. Immunofluorescence detection of new antigen-antibody system (delta/antidelta) associated to hepatitis B virus in liver and in serum of HBsAg carriers. Gut. 1977;18:997–1003.CrossRefPubMedPubMedCentral
15.
go back to reference Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 2012;7:e30733.CrossRefPubMedPubMedCentral Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 2012;7:e30733.CrossRefPubMedPubMedCentral
18.
19.
go back to reference Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH, Bindereif A. Exon circularization requires canonical splice signals. Cell Rep. 2015;10:103–11.CrossRefPubMed Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH, Bindereif A. Exon circularization requires canonical splice signals. Cell Rep. 2015;10:103–11.CrossRefPubMed
20.
go back to reference Meng X, Li X, Zhang P, Wang J, Zhou Y, Chen M. Circular RNA: an emerging key player in RNA world. Brief Bioinform. 2017;18:547–57.PubMed Meng X, Li X, Zhang P, Wang J, Zhou Y, Chen M. Circular RNA: an emerging key player in RNA world. Brief Bioinform. 2017;18:547–57.PubMed
21.
go back to reference Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL. Circular intronic long noncoding RNAs. Mol Cell. 2013;51:792–806.CrossRefPubMed Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL. Circular intronic long noncoding RNAs. Mol Cell. 2013;51:792–806.CrossRefPubMed
23.
go back to reference Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22:256–64.CrossRefPubMed Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22:256–64.CrossRefPubMed
26.
27.
go back to reference Bing Han A, Jie Chao B, Yao H. Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharm Ther. 2018;187:31–44.CrossRef Bing Han A, Jie Chao B, Yao H. Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharm Ther. 2018;187:31–44.CrossRef
28.
go back to reference Conn Simon J, Pillman Katherine A, Toubia J, Conn Vanessa M, Salmanidis M, Phillips Caroline A, Roslan S, Schreiber Andreas W, Gregory Philip A, Goodall Gregory J. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160:1125–34.CrossRefPubMed Conn Simon J, Pillman Katherine A, Toubia J, Conn Vanessa M, Salmanidis M, Phillips Caroline A, Roslan S, Schreiber Andreas W, Gregory Philip A, Goodall Gregory J. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160:1125–34.CrossRefPubMed
29.
go back to reference Cocquerelle C, Mascrez B, Hetuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993;7:155–60.CrossRefPubMed Cocquerelle C, Mascrez B, Hetuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993;7:155–60.CrossRefPubMed
30.
go back to reference Kelly S, Greenman C, Cook PR, Papantonis A. Exon skipping is correlated with exon circularization. J Mol Biol. 2015;427:2414–7.CrossRefPubMed Kelly S, Greenman C, Cook PR, Papantonis A. Exon skipping is correlated with exon circularization. J Mol Biol. 2015;427:2414–7.CrossRefPubMed
31.
go back to reference Qian Y, Lu Y, Rui C, et al. Potential significance of circular RNA in human placental tissue for patients with preeclampsia. Cell Physiol Biochem. 2016;39:1380–90.CrossRefPubMed Qian Y, Lu Y, Rui C, et al. Potential significance of circular RNA in human placental tissue for patients with preeclampsia. Cell Physiol Biochem. 2016;39:1380–90.CrossRefPubMed
33.
go back to reference Suzuki H, Zuo Y, Wang J, et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 2006;34:e63.CrossRefPubMedPubMedCentral Suzuki H, Zuo Y, Wang J, et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 2006;34:e63.CrossRefPubMedPubMedCentral
34.
go back to reference Zaphiropoulos PG. Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. Proc Natl Acad Sci USA. 1996;93:6536–41.CrossRefPubMedPubMedCentral Zaphiropoulos PG. Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. Proc Natl Acad Sci USA. 1996;93:6536–41.CrossRefPubMedPubMedCentral
35.
go back to reference Chen L, Shan G. Circular RNAs remain peculiarly unclear in biogenesis and function. Sci China Life Sci. 2015;58:616–8.CrossRefPubMed Chen L, Shan G. Circular RNAs remain peculiarly unclear in biogenesis and function. Sci China Life Sci. 2015;58:616–8.CrossRefPubMed
36.
go back to reference Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ. The RNA binding protein quakingregulates formation of circRNAs. Cell. 2015;160(6):1125–34.CrossRefPubMed Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ. The RNA binding protein quakingregulates formation of circRNAs. Cell. 2015;160(6):1125–34.CrossRefPubMed
37.
go back to reference Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. J Neurosci Res. 2020;98:87–97.CrossRefPubMed Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. J Neurosci Res. 2020;98:87–97.CrossRefPubMed
38.
go back to reference Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58:870–85.CrossRefPubMed Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58:870–85.CrossRefPubMed
39.
go back to reference Shi L, Yan P, Liang Y, Sun Y, Shen J, Zhou S, Lin H, Liang X, Cai X. Circular RNA expression is suppressed by androgen receptor (AR)-regulated adenosine deaminase that acts on RNA (ADAR1) in human hepatocellular carcinoma. Cell Death Dis. 2017;8:e3171.CrossRefPubMedPubMedCentral Shi L, Yan P, Liang Y, Sun Y, Shen J, Zhou S, Lin H, Liang X, Cai X. Circular RNA expression is suppressed by androgen receptor (AR)-regulated adenosine deaminase that acts on RNA (ADAR1) in human hepatocellular carcinoma. Cell Death Dis. 2017;8:e3171.CrossRefPubMedPubMedCentral
40.
go back to reference Zhang XO, Wang HB, Zhang Y, et al. Complementary sequence-mediated exon circularization. Cell. 2014;159:134–47.CrossRefPubMed Zhang XO, Wang HB, Zhang Y, et al. Complementary sequence-mediated exon circularization. Cell. 2014;159:134–47.CrossRefPubMed
41.
go back to reference Ivanov A, Memczak S, Wyler E, Torti F, Porath Hagit T, Orejuela Marta R, Piechotta M, Levanon Erez Y, Landthaler M, Dieterich C, Rajewsky N. Analysis of intron sequences reveals hallmarks of Circular RNA biogenesis in animals. Cell Rep. 2015;10:170–7.CrossRefPubMed Ivanov A, Memczak S, Wyler E, Torti F, Porath Hagit T, Orejuela Marta R, Piechotta M, Levanon Erez Y, Landthaler M, Dieterich C, Rajewsky N. Analysis of intron sequences reveals hallmarks of Circular RNA biogenesis in animals. Cell Rep. 2015;10:170–7.CrossRefPubMed
42.
go back to reference Laura NE. Circular RNA Splicing. Adv Exp Med Biol. 2018;1087:41–52. Laura NE. Circular RNA Splicing. Adv Exp Med Biol. 2018;1087:41–52.
44.
45.
go back to reference Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH. Bindereif a exon circularization requires canonical splice signals. Cell Rep. 2015;10:103–11.CrossRefPubMed Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH. Bindereif a exon circularization requires canonical splice signals. Cell Rep. 2015;10:103–11.CrossRefPubMed
46.
go back to reference Park OH, Ha H, Lee Y, Boo SH, Kwon DH, Song HK, Kim YK. Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/MRP complex. Mol Cell. 2019;74:494–507.CrossRefPubMed Park OH, Ha H, Lee Y, Boo SH, Kwon DH, Song HK, Kim YK. Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/MRP complex. Mol Cell. 2019;74:494–507.CrossRefPubMed
47.
go back to reference Liu CX, Li X, Nan F, Jiang S, Gao X, Guo S-K, Xue W, Cui Y, Dong K, Ding H. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell. 2019;177:865–880.e21.CrossRefPubMed Liu CX, Li X, Nan F, Jiang S, Gao X, Guo S-K, Xue W, Cui Y, Dong K, Ding H. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell. 2019;177:865–880.e21.CrossRefPubMed
48.
go back to reference Yu CY, Li TC, Wu YY, Yeh CH, Chiang W, Chuang CY, Kuo HC. The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nat Commun. 2017;8:1149.CrossRefPubMedPubMedCentral Yu CY, Li TC, Wu YY, Yeh CH, Chiang W, Chuang CY, Kuo HC. The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nat Commun. 2017;8:1149.CrossRefPubMedPubMedCentral
49.
go back to reference Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, Kjems J. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 2011;30:4414–22.CrossRefPubMedPubMedCentral Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, Kjems J. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 2011;30:4414–22.CrossRefPubMedPubMedCentral
51.
go back to reference Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X, Huang S. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25:981–4.CrossRefPubMedPubMedCentral Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X, Huang S. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25:981–4.CrossRefPubMedPubMedCentral
52.
go back to reference Preußer C, Hung LH, Schneider T, Schreiner S, Hardt M, Moebus A, Santoso S, Bindereif A. Selective release of circRNAs in platelet-derived extracellular vesicles. J Extracell Vesicles. 2018;7:1424473.CrossRefPubMedPubMedCentral Preußer C, Hung LH, Schneider T, Schreiner S, Hardt M, Moebus A, Santoso S, Bindereif A. Selective release of circRNAs in platelet-derived extracellular vesicles. J Extracell Vesicles. 2018;7:1424473.CrossRefPubMedPubMedCentral
53.
go back to reference Abdelmohsen K, Kuwano Y, Kim HH, Gorospe M. Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence. Biol Chem. 2008;389:243–55.CrossRefPubMedPubMedCentral Abdelmohsen K, Kuwano Y, Kim HH, Gorospe M. Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence. Biol Chem. 2008;389:243–55.CrossRefPubMedPubMedCentral
55.
go back to reference Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016;44:2846–58.CrossRefPubMedPubMedCentral Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016;44:2846–58.CrossRefPubMedPubMedCentral
56.
go back to reference Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 2017;14:361–9.CrossRefPubMedPubMedCentral Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 2017;14:361–9.CrossRefPubMedPubMedCentral
57.
go back to reference Hansen TB, Venø MT, Damgaard CK, Kjems J. Comparison of circular RNA prediction tools. Nucleic Acids Res. 2016;44:e58.CrossRefPubMed Hansen TB, Venø MT, Damgaard CK, Kjems J. Comparison of circular RNA prediction tools. Nucleic Acids Res. 2016;44:e58.CrossRefPubMed
59.
go back to reference Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.CrossRefPubMed Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.CrossRefPubMed
60.
61.
go back to reference Zheng Q, Bao C, Guo W, et al. Circular RNA profiling revealsan abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Naturecommunications. 2016;7:11215. Zheng Q, Bao C, Guo W, et al. Circular RNA profiling revealsan abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Naturecommunications. 2016;7:11215.
62.
go back to reference Peng L, Chen G, Zhu Z, et al. Circular RNA ZNF609 functions as a competitive endogenous RNA to regulate AKT3 expression by sponging miR-150-5p in Hirschs-prung’s disease. Oncotarget. 2017;8:808–18.CrossRefPubMed Peng L, Chen G, Zhu Z, et al. Circular RNA ZNF609 functions as a competitive endogenous RNA to regulate AKT3 expression by sponging miR-150-5p in Hirschs-prung’s disease. Oncotarget. 2017;8:808–18.CrossRefPubMed
63.
go back to reference Wang K, Long B, Liu F, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting mir −223. Eur Heart J. 2016;37:2602–11.CrossRefPubMed Wang K, Long B, Liu F, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting mir −223. Eur Heart J. 2016;37:2602–11.CrossRefPubMed
64.
go back to reference Luo L, Gao YQ, Sun XF. Circ-ITCH correlates with small tumor size, decreased FIGO stage and prolonged overall survival, and it inhibits cells proliferation while promotes cells apoptosis in epithelial ovarian cancer. Cancer Biomark. 2018;23(4):505–13.CrossRefPubMed Luo L, Gao YQ, Sun XF. Circ-ITCH correlates with small tumor size, decreased FIGO stage and prolonged overall survival, and it inhibits cells proliferation while promotes cells apoptosis in epithelial ovarian cancer. Cancer Biomark. 2018;23(4):505–13.CrossRefPubMed
65.
go back to reference Liu KS, Pan F, Mao XD, et al. Biological functions of circular RNAs and their roles in occurrence of reproduction and gyne- cological diseases. Am J Transl Res. 2019;11(1):1–15.PubMedPubMedCentral Liu KS, Pan F, Mao XD, et al. Biological functions of circular RNAs and their roles in occurrence of reproduction and gyne- cological diseases. Am J Transl Res. 2019;11(1):1–15.PubMedPubMedCentral
66.
go back to reference Ashwal-Fluss R, Meyer M, Pamudurti Nagarjuna R, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56:55–66.CrossRefPubMed Ashwal-Fluss R, Meyer M, Pamudurti Nagarjuna R, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56:55–66.CrossRefPubMed
69.
go back to reference Kos A, Dijkema R, Arnberg AC, van der Meide PH, Schellekens H. The hepatitis delta (δ) virus possesses a circular RNA. Nature. 1986;323:558.CrossRefPubMed Kos A, Dijkema R, Arnberg AC, van der Meide PH, Schellekens H. The hepatitis delta (δ) virus possesses a circular RNA. Nature. 1986;323:558.CrossRefPubMed
71.
go back to reference Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL, Yang L. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 2016;26:1277–87. Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL, Yang L. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 2016;26:1277–87.
72.
go back to reference Ji P, Wu W, Chen S, Zheng Y, Zhou L, Zhang J, Cheng H, Yan J, Zhang S, Yang P, et al. Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep. 2019;26:3444–60.CrossRefPubMed Ji P, Wu W, Chen S, Zheng Y, Zhou L, Zhang J, Cheng H, Yan J, Zhang S, Yang P, et al. Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep. 2019;26:3444–60.CrossRefPubMed
73.
go back to reference Fan X, Zhang X, Wu X, Guo H, Hu Y, Tang F, Huang Y. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 2015;16:148.CrossRefPubMedPubMedCentral Fan X, Zhang X, Wu X, Guo H, Hu Y, Tang F, Huang Y. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 2015;16:148.CrossRefPubMedPubMedCentral
74.
go back to reference Dang Y, Yan L, Hu B, Fan X, Ren Y, Li R, Lian Y, Yan J, Li Q, Zhang Y, et al. Tracing the expression of circular RNAs in human pre-implantation embryos. Genome Biol. 2016;17:130.CrossRefPubMedPubMedCentral Dang Y, Yan L, Hu B, Fan X, Ren Y, Li R, Lian Y, Yan J, Li Q, Zhang Y, et al. Tracing the expression of circular RNAs in human pre-implantation embryos. Genome Biol. 2016;17:130.CrossRefPubMedPubMedCentral
75.
go back to reference Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103:303–16.CrossRefPubMed Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103:303–16.CrossRefPubMed
76.
go back to reference Moreno JM, Núñez MJ, Quiñonero A, Martínez S, de la Orden M, Simón C, Pellicer A, Díaz-García C, Domínguez F. Follicular fluid and mural granulosa cells microRNA profiles vary in in vitro fertilization patients depending on their age and oocyte maturation stage. Fertil Steril. 2015;104:1037–46.CrossRefPubMed Moreno JM, Núñez MJ, Quiñonero A, Martínez S, de la Orden M, Simón C, Pellicer A, Díaz-García C, Domínguez F. Follicular fluid and mural granulosa cells microRNA profiles vary in in vitro fertilization patients depending on their age and oocyte maturation stage. Fertil Steril. 2015;104:1037–46.CrossRefPubMed
77.
go back to reference Che Q, Liu M, Xu J, Liu Y, Cao X, Dong X, Liu S. Characterization of circular RNA expression profiles in cumulus cells from patients with polycystic ovary syndrome. Fertil Steril. 2019;111:1243–51.CrossRefPubMed Che Q, Liu M, Xu J, Liu Y, Cao X, Dong X, Liu S. Characterization of circular RNA expression profiles in cumulus cells from patients with polycystic ovary syndrome. Fertil Steril. 2019;111:1243–51.CrossRefPubMed
79.
go back to reference Bozdag G, Mumusoglu S, Zengin D, Karabulut E, Yildiz BO. The prevalence and phenotypic features of polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod. 2016;31:2841–55.CrossRefPubMed Bozdag G, Mumusoglu S, Zengin D, Karabulut E, Yildiz BO. The prevalence and phenotypic features of polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod. 2016;31:2841–55.CrossRefPubMed
80.
go back to reference Wang LP, Xy P, Xq L, Liu L, Li XL, He X, Lv F, Pan Y, Wang L, Liu KF, Zhang XM. High throughput circRNAs sequencing profile of follicle fluid exosomes of polycystic ovary syndrome patients. J Cell Physiol. 2019;234:15537–47.CrossRef Wang LP, Xy P, Xq L, Liu L, Li XL, He X, Lv F, Pan Y, Wang L, Liu KF, Zhang XM. High throughput circRNAs sequencing profile of follicle fluid exosomes of polycystic ovary syndrome patients. J Cell Physiol. 2019;234:15537–47.CrossRef
81.
go back to reference Tomoko H, Kaei N, Wakana A, et al. miR-503, a microRNA epigenetically repressed in endometriosis, induces apoptosis and cell-cycle arrest and inhibits cell proliferation, angiogenesis, and contractility of human ovarian endometriotic stromal cells. Hum Reprod. 2016;11:2587. Tomoko H, Kaei N, Wakana A, et al. miR-503, a microRNA epigenetically repressed in endometriosis, induces apoptosis and cell-cycle arrest and inhibits cell proliferation, angiogenesis, and contractility of human ovarian endometriotic stromal cells. Hum Reprod. 2016;11:2587.
82.
go back to reference Yao T, Ying X, Zhao Y, Yuan A, He Q, Tong H, Ding S, Liu J, Peng X, Gao E, et al. Vitamin D receptor activation protects against myocardial reperfusion injury through inhibition of apoptosis and modulation of autophagy. Antioxid Redox Signal. 2015;22:633–50.CrossRefPubMedPubMedCentral Yao T, Ying X, Zhao Y, Yuan A, He Q, Tong H, Ding S, Liu J, Peng X, Gao E, et al. Vitamin D receptor activation protects against myocardial reperfusion injury through inhibition of apoptosis and modulation of autophagy. Antioxid Redox Signal. 2015;22:633–50.CrossRefPubMedPubMedCentral
83.
go back to reference Xu X, Jia SZ, Dai Y, Zhang J-J, Li X, Shi J, Leng J, Lang J. The relationship of Circular RNAs with ovarian endometriosis. Reprod Sci. 2018;25:1292–300.CrossRefPubMed Xu X, Jia SZ, Dai Y, Zhang J-J, Li X, Shi J, Leng J, Lang J. The relationship of Circular RNAs with ovarian endometriosis. Reprod Sci. 2018;25:1292–300.CrossRefPubMed
84.
go back to reference Zhang MM, Chu T. Expression profile analysis of Circular RNAs in ovarian endometriosis by microarray and bioinformatics. Medical science monitor international medical. J Exp Clin Res. 2018;24:9240–50. Zhang MM, Chu T. Expression profile analysis of Circular RNAs in ovarian endometriosis by microarray and bioinformatics. Medical science monitor international medical. J Exp Clin Res. 2018;24:9240–50.
85.
go back to reference Amagai Y, Itoh T, Fukuda M, Mizuno K. Rabin8 suppresses autophagosome formation independently of its guanine nucleotide-exchange activity towards Rab8. J Biochem. 2015;158:139–53.CrossRefPubMed Amagai Y, Itoh T, Fukuda M, Mizuno K. Rabin8 suppresses autophagosome formation independently of its guanine nucleotide-exchange activity towards Rab8. J Biochem. 2015;158:139–53.CrossRefPubMed
86.
go back to reference Liu L, Li L, Ma X, Yue F, Wang Y, Wang L, Jin P, Zhang X. Altered Circular RNA expression in patients with repeated implantation failure. Cell Physiol Biochem. 2017;44:303–13.CrossRefPubMed Liu L, Li L, Ma X, Yue F, Wang Y, Wang L, Jin P, Zhang X. Altered Circular RNA expression in patients with repeated implantation failure. Cell Physiol Biochem. 2017;44:303–13.CrossRefPubMed
87.
go back to reference Liu L, Lian J, Zhang H, et al. MicroRNA-302a sensitizes testicular embryonal carcinoma cells to cisplatin-induced cell death. J Cell Physiol. 2013;228:2294–304.CrossRefPubMed Liu L, Lian J, Zhang H, et al. MicroRNA-302a sensitizes testicular embryonal carcinoma cells to cisplatin-induced cell death. J Cell Physiol. 2013;228:2294–304.CrossRefPubMed
88.
go back to reference Bastu E, Mutlu MF, Yasa C, Dural O, Nehir Aytan A, Celik C, Buyru F, Yeh J. Role of Mucin 1 and Glycodelin a in recurrent implantation failure. Fertil Steril. 2015;103:1059–64.CrossRefPubMed Bastu E, Mutlu MF, Yasa C, Dural O, Nehir Aytan A, Celik C, Buyru F, Yeh J. Role of Mucin 1 and Glycodelin a in recurrent implantation failure. Fertil Steril. 2015;103:1059–64.CrossRefPubMed
89.
go back to reference Chung T, Park M, Kim H, Choi H, Ha K. Integrin αVβ3 and αVβ5 are required for leukemia inhibitory factor-mediated the adhesion of trophoblast cells to the endometrial cells. Biochem Biophys Res Commun. 2016;469:936–40.CrossRefPubMed Chung T, Park M, Kim H, Choi H, Ha K. Integrin αVβ3 and αVβ5 are required for leukemia inhibitory factor-mediated the adhesion of trophoblast cells to the endometrial cells. Biochem Biophys Res Commun. 2016;469:936–40.CrossRefPubMed
91.
go back to reference Simmons D, Kennedy T. Uterine sensitization-associated gene-1: a novel gene induced within the rat endometrium at the time of uterine receptivity/sensitization for the decidual cell reaction. Biol Reprod. 2002;67:1638–45.CrossRefPubMed Simmons D, Kennedy T. Uterine sensitization-associated gene-1: a novel gene induced within the rat endometrium at the time of uterine receptivity/sensitization for the decidual cell reaction. Biol Reprod. 2002;67:1638–45.CrossRefPubMed
92.
go back to reference Revel A, Achache H, Stevens J, Smith Y, Reich R. MicroRNAs are associated with human embryo implantation defects. Hum Reprod. 2011;26:2830–40.CrossRefPubMed Revel A, Achache H, Stevens J, Smith Y, Reich R. MicroRNAs are associated with human embryo implantation defects. Hum Reprod. 2011;26:2830–40.CrossRefPubMed
93.
go back to reference Song Y, An X, Zhang L, Fu M, Peng J, Han P, et al. Identifification and profifiling of microRNAs in goat endometrium during embryo implantation. PLoS One. 2015;10:e0122202.CrossRefPubMedPubMedCentral Song Y, An X, Zhang L, Fu M, Peng J, Han P, et al. Identifification and profifiling of microRNAs in goat endometrium during embryo implantation. PLoS One. 2015;10:e0122202.CrossRefPubMedPubMedCentral
94.
go back to reference Wang Y, Hu T, Wu L, Liu X, Xue S, Lei M. Identifification of non-coding and coding RNAs in porcine endometrium. Genomics. 2017;109:43–50.CrossRefPubMed Wang Y, Hu T, Wu L, Liu X, Xue S, Lei M. Identifification of non-coding and coding RNAs in porcine endometrium. Genomics. 2017;109:43–50.CrossRefPubMed
95.
go back to reference Zhang L, Liu X, Che S, Cui J, Liu Y, An X, et al. CircRNA-9119 regulates the expression of prostaglandin endoperoxide synthase 2 (PTGS2) by sponging miR-26a in the endometrial epithelial cells of dairy goat. Reprod Fertil Dev. 2018;30(12):1759–69. Zhang L, Liu X, Che S, Cui J, Liu Y, An X, et al. CircRNA-9119 regulates the expression of prostaglandin endoperoxide synthase 2 (PTGS2) by sponging miR-26a in the endometrial epithelial cells of dairy goat. Reprod Fertil Dev. 2018;30(12):1759–69.
96.
go back to reference Qian Y, Wang X, Ruan H, et al. Circular RNAs expressed in chorionic villi are probably involved in the occurrence of recurrent spontaneous abortion. Biomed Pharmacother. 2017;88:1154–62.CrossRef Qian Y, Wang X, Ruan H, et al. Circular RNAs expressed in chorionic villi are probably involved in the occurrence of recurrent spontaneous abortion. Biomed Pharmacother. 2017;88:1154–62.CrossRef
97.
go back to reference Wang X, Li B, Wang J, Lei J, Liu C, Ma Y, Zhao H. Evidence that miR-133a causes recurrent spontaneous abortion by reducing HLA-G expression. Reprod BioMed Online. 2012;25:415–24.CrossRefPubMed Wang X, Li B, Wang J, Lei J, Liu C, Ma Y, Zhao H. Evidence that miR-133a causes recurrent spontaneous abortion by reducing HLA-G expression. Reprod BioMed Online. 2012;25:415–24.CrossRefPubMed
Metadata
Title
Biogenesis and functions of circular RNAs and their role in diseases of the female reproductive system
Authors
Yalan Ma
Ying Xu
Jingshun Zhang
Lianwen Zheng
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Endometriosis
Published in
Reproductive Biology and Endocrinology / Issue 1/2020
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-020-00653-5

Other articles of this Issue 1/2020

Reproductive Biology and Endocrinology 1/2020 Go to the issue