Skip to main content
Top
Published in: BMC Dermatology 1/2011

Open Access 01-12-2011 | Research article

Psoriasis prediction from genome-wide SNP profiles

Authors: Shenying Fang, Xiangzhong Fang, Momiao Xiong

Published in: BMC Dermatology | Issue 1/2011

Login to get access

Abstract

Background

With the availability of large-scale genome-wide association study (GWAS) data, choosing an optimal set of SNPs for disease susceptibility prediction is a challenging task. This study aimed to use single nucleotide polymorphisms (SNPs) to predict psoriasis from searching GWAS data.

Methods

Totally we had 2,798 samples and 451,724 SNPs. Process for searching a set of SNPs to predict susceptibility for psoriasis consisted of two steps. The first one was to search top 1,000 SNPs with high accuracy for prediction of psoriasis from GWAS dataset. The second one was to search for an optimal SNP subset for predicting psoriasis. The sequential information bottleneck (sIB) method was compared with classical linear discriminant analysis(LDA) for classification performance.

Results

The best test harmonic mean of sensitivity and specificity for predicting psoriasis by sIB was 0.674(95% CI: 0.650-0.698), while only 0.520(95% CI: 0.472-0.524) was reported for predicting disease by LDA. Our results indicate that the new classifier sIB performs better than LDA in the study.

Conclusions

The fact that a small set of SNPs can predict disease status with average accuracy of 68% makes it possible to use SNP data for psoriasis prediction.
Appendix
Available only for authorised users
Literature
1.
go back to reference D'Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB: General cardiovascular risk profile for use in primary care - The Framingham Heart Study. Circulation 2008, 117: 743–753.CrossRefPubMed D'Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB: General cardiovascular risk profile for use in primary care - The Framingham Heart Study. Circulation 2008, 117: 743–753.CrossRefPubMed
2.
go back to reference Gail MH: Discriminatory accuracy from single-nucleotide polymorphisms in models to predict breast cancer risk. Journal of the National Cancer Institute 2008, 100: 1037–1041. 10.1093/jnci/djn180CrossRefPubMedPubMedCentral Gail MH: Discriminatory accuracy from single-nucleotide polymorphisms in models to predict breast cancer risk. Journal of the National Cancer Institute 2008, 100: 1037–1041. 10.1093/jnci/djn180CrossRefPubMedPubMedCentral
3.
go back to reference Gormley M, Dampier W, Ertel A, Karacali B, Tozeren A: Prediction potential of candidate biomarker sets identified and validated on gene expression data from multiple datasets. Bmc Bioinformatics 2007., 8: 10.1186/1471-2105-8-415 Gormley M, Dampier W, Ertel A, Karacali B, Tozeren A: Prediction potential of candidate biomarker sets identified and validated on gene expression data from multiple datasets. Bmc Bioinformatics 2007., 8: 10.1186/1471-2105-8-415
4.
go back to reference Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16: 906–914. 10.1093/bioinformatics/16.10.906CrossRefPubMed Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16: 906–914. 10.1093/bioinformatics/16.10.906CrossRefPubMed
6.
go back to reference Zhou N, Wang L: Effective selection of informative SNPs and classification on the HapMap genotype data. Bmc Bioinformatics 2007., 8: 10.1186/1471-2105-8-484 Zhou N, Wang L: Effective selection of informative SNPs and classification on the HapMap genotype data. Bmc Bioinformatics 2007., 8: 10.1186/1471-2105-8-484
7.
go back to reference Tsalenko A, Ben-Dor A, Yakhini Z, Cox NJ: Methods for analysis and visualization of SNP genotype data for complex diseases. American Journal of Human Genetics 2001, 69: 182. Tsalenko A, Ben-Dor A, Yakhini Z, Cox NJ: Methods for analysis and visualization of SNP genotype data for complex diseases. American Journal of Human Genetics 2001, 69: 182.
8.
go back to reference Zhang B, Horvath S: Ridge regression based hybrid genetic algorithms for multi-locus quantitative trait mapping. Int J Bioinform Res Appl 2005, 1: 261–272. 10.1504/IJBRA.2005.007905CrossRefPubMed Zhang B, Horvath S: Ridge regression based hybrid genetic algorithms for multi-locus quantitative trait mapping. Int J Bioinform Res Appl 2005, 1: 261–272. 10.1504/IJBRA.2005.007905CrossRefPubMed
9.
go back to reference Brinza D, Zelikovsky A: Combinatorial methods for disease association search and susceptibility prediction. Algorithms in Bioinformatics, Proceedings 2006, 4175: 286–297. full_textCrossRef Brinza D, Zelikovsky A: Combinatorial methods for disease association search and susceptibility prediction. Algorithms in Bioinformatics, Proceedings 2006, 4175: 286–297. full_textCrossRef
10.
go back to reference Wang YH, Makedon F, Pearlman J: Tumor classification based on DNA copy number aberrations determined using SNP arrays. Oncology Reports 2006, 15: 1057–1059.PubMed Wang YH, Makedon F, Pearlman J: Tumor classification based on DNA copy number aberrations determined using SNP arrays. Oncology Reports 2006, 15: 1057–1059.PubMed
11.
go back to reference Wang XL, Fan ZJ, Huang JF, Su SY, Yu QJ, Zhao JG, Hui RT, Yao ZJ, Shen Y, Qiang BQ, Gu DF: Extensive association analysis between polymorphisms of PON gene cluster with coronary heart disease in Chinese Han population. Arteriosclerosis Thrombosis and Vascular Biology 2003, 23: 328–334. 10.1161/01.ATV.0000051702.38086.C1CrossRef Wang XL, Fan ZJ, Huang JF, Su SY, Yu QJ, Zhao JG, Hui RT, Yao ZJ, Shen Y, Qiang BQ, Gu DF: Extensive association analysis between polymorphisms of PON gene cluster with coronary heart disease in Chinese Han population. Arteriosclerosis Thrombosis and Vascular Biology 2003, 23: 328–334. 10.1161/01.ATV.0000051702.38086.C1CrossRef
12.
go back to reference Zhou F, He J, hong W: Mutual information based minimum spanning trees model for selecting discriminative genes. Bioinformatics and bioengineering. Bioinformatics and bioengineering 2007, 1051–1055. Zhou F, He J, hong W: Mutual information based minimum spanning trees model for selecting discriminative genes. Bioinformatics and bioengineering. Bioinformatics and bioengineering 2007, 1051–1055.
13.
go back to reference Lu Q, Elston RC: Using the optimal receiver operating characteristic curve to design a predictive genetic test, exemplified with type 2 diabetes. American Journal of Human Genetics 2008, 82: 641–651. 10.1016/j.ajhg.2007.12.025CrossRefPubMedPubMedCentral Lu Q, Elston RC: Using the optimal receiver operating characteristic curve to design a predictive genetic test, exemplified with type 2 diabetes. American Journal of Human Genetics 2008, 82: 641–651. 10.1016/j.ajhg.2007.12.025CrossRefPubMedPubMedCentral
14.
go back to reference Cho BH, Yu H, Kim KW, Kim TH, Kim IY, Kim SI: Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods. Artificial Intelligence in Medicine 2008, 42: 37–53. 10.1016/j.artmed.2007.09.005CrossRefPubMed Cho BH, Yu H, Kim KW, Kim TH, Kim IY, Kim SI: Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods. Artificial Intelligence in Medicine 2008, 42: 37–53. 10.1016/j.artmed.2007.09.005CrossRefPubMed
15.
go back to reference Nair RP, Stuart PE, Nistor I, Hiremagalore R, Chia NVC, Jenisch S, Weichenthal M, Abecasis GR, Lim HW, Christophers E, Voorhees JJ, Elder JT: Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. American Journal of Human Genetics 2006, 78: 827–851. 10.1086/503821CrossRefPubMedPubMedCentral Nair RP, Stuart PE, Nistor I, Hiremagalore R, Chia NVC, Jenisch S, Weichenthal M, Abecasis GR, Lim HW, Christophers E, Voorhees JJ, Elder JT: Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. American Journal of Human Genetics 2006, 78: 827–851. 10.1086/503821CrossRefPubMedPubMedCentral
17.
go back to reference Slonim N, Friedman N, Tishby N: Unsupervised document classification using sequential information maximization. In Proceedings of the 25th annual international ACM SIGIR conference on research and development in information retrieval. Tampere, Finland; 2003. Slonim N, Friedman N, Tishby N: Unsupervised document classification using sequential information maximization. In Proceedings of the 25th annual international ACM SIGIR conference on research and development in information retrieval. Tampere, Finland; 2003.
18.
go back to reference Cover TM: The best two independent measurements are not the two best. IEEE Trans Systems, Man, and Cybernetics 1974, 4: 116–117.CrossRef Cover TM: The best two independent measurements are not the two best. IEEE Trans Systems, Man, and Cybernetics 1974, 4: 116–117.CrossRef
19.
go back to reference Guyon I, Elisseeff A: An introduction to variable and feature selection. J Mach Learn Res 2003, 1157–1182. 10.1162/153244303322753616 Guyon I, Elisseeff A: An introduction to variable and feature selection. J Mach Learn Res 2003, 1157–1182. 10.1162/153244303322753616
Metadata
Title
Psoriasis prediction from genome-wide SNP profiles
Authors
Shenying Fang
Xiangzhong Fang
Momiao Xiong
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Dermatology / Issue 1/2011
Electronic ISSN: 1471-5945
DOI
https://doi.org/10.1186/1471-5945-11-1

Other articles of this Issue 1/2011

BMC Dermatology 1/2011 Go to the issue