Skip to main content
Top
Published in: BMC Medical Imaging 1/2021

Open Access 01-12-2021 | Research

Towards improving edge quality using combinatorial optimization and a novel skeletonize algorithm

Authors: Marvin Arnold, Stefanie Speidel, Georges Hattab

Published in: BMC Medical Imaging | Issue 1/2021

Login to get access

Abstract

Background

Object detection and image segmentation of regions of interest provide the foundation for numerous pipelines across disciplines. Robust and accurate computer vision methods are needed to properly solve image-based tasks. Multiple algorithms have been developed to solely detect edges in images. Constrained to the problem of creating a thin, one-pixel wide, edge from a predicted object boundary, we require an algorithm that removes pixels while preserving the topology. Thanks to skeletonize algorithms, an object boundary is transformed into an edge; contrasting uncertainty with exact positions.

Methods

To extract edges from boundaries generated from different algorithms, we present a computational pipeline that relies on: a novel skeletonize algorithm, a non-exhaustive discrete parameter search to find the optimal parameter combination of a specific post-processing pipeline, and an extensive evaluation using three data sets from the medical and natural image domains (kidney boundaries, NYU-Depth V2, BSDS 500). While the skeletonize algorithm was compared to classical topological skeletons, the validity of our post-processing algorithm was evaluated by integrating the original post-processing methods from six different works.

Results

Using the state of the art metrics, precision and recall based Signed Distance Error (SDE) and the Intersection over Union bounding box (IOU-box), our results indicate that the SDE metric for these edges is improved up to 2.3 times.

Conclusions

Our work provides guidance for parameter tuning and algorithm selection in the post-processing of predicted object boundaries.
Literature
1.
go back to reference Salman N. Image segmentation based on watershed and edge detection techniques. Int Arab J Inf Technol. 2006;3(2):104–10. Salman N. Image segmentation based on watershed and edge detection techniques. Int Arab J Inf Technol. 2006;3(2):104–10.
2.
go back to reference Zhan C, Duan X, Xu S, Song Z, Luo M. An improved moving object detection algorithm based on frame difference and edge detection. In: Fourth international conference on image and graphics (ICIG 2007). 2007. p. 519–523. Zhan C, Duan X, Xu S, Song Z, Luo M. An improved moving object detection algorithm based on frame difference and edge detection. In: Fourth international conference on image and graphics (ICIG 2007). 2007. p. 519–523.
3.
go back to reference Zitnick CL, Dollár P. Edge boxes: locating object proposals from edges. In: European conference on computer vision. Springer; 2014. p. 391–405. Zitnick CL, Dollár P. Edge boxes: locating object proposals from edges. In: European conference on computer vision. Springer; 2014. p. 391–405.
4.
5.
go back to reference Roberts LG. Machine perception of three-dimensional solids. Ph.D Thesis, Massachusetts Institute of Technology; 1963. Roberts LG. Machine perception of three-dimensional solids. Ph.D Thesis, Massachusetts Institute of Technology; 1963.
6.
go back to reference Prewitt JM. Object enhancement and extraction. Pict Process Psychopict. 1970;10(1):15–9. Prewitt JM. Object enhancement and extraction. Pict Process Psychopict. 1970;10(1):15–9.
7.
go back to reference Sobel I. Camera models and machine perception. Computer Science Department, Technion: Technical report; 1972. Sobel I. Camera models and machine perception. Computer Science Department, Technion: Technical report; 1972.
8.
go back to reference Marr D, Hildreth E. Theory of edge detection. Proc R Soc Lond Ser B Biol Sci. 1980;207(1167):187–217.CrossRef Marr D, Hildreth E. Theory of edge detection. Proc R Soc Lond Ser B Biol Sci. 1980;207(1167):187–217.CrossRef
9.
go back to reference Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 1986;6:679–98.CrossRef Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 1986;6:679–98.CrossRef
10.
go back to reference Acuna D, Kar A, Fidler S. Devil is in the edges: learning semantic boundaries from noisy annotations. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2019. p. 11075–11083. Acuna D, Kar A, Fidler S. Devil is in the edges: learning semantic boundaries from noisy annotations. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2019. p. 11075–11083.
11.
go back to reference Marmanis D, Schindler K, Wegner JD, Galliani S, Datcu M, Stilla U. Classification with an edge: improving semantic image segmentation with boundary detection. ISPRS J Photogram Remote Sens. 2018;135:158–72.CrossRef Marmanis D, Schindler K, Wegner JD, Galliani S, Datcu M, Stilla U. Classification with an edge: improving semantic image segmentation with boundary detection. ISPRS J Photogram Remote Sens. 2018;135:158–72.CrossRef
12.
go back to reference Wu Z, Li S, Chen C, Hao A, Qin H. A deeper look at image salient object detection: Bi-stream network with a small training dataset. IEEE Trans Multimed. 2020. Wu Z, Li S, Chen C, Hao A, Qin H. A deeper look at image salient object detection: Bi-stream network with a small training dataset. IEEE Trans Multimed. 2020.
13.
go back to reference Wang X, Li S, Chen C, Fang Y, Hao A, Qin H. Data-level recombination and lightweight fusion scheme for RGB-D salient object detection. IEEE Trans Image Process. 2020;30:458–71.CrossRef Wang X, Li S, Chen C, Fang Y, Hao A, Qin H. Data-level recombination and lightweight fusion scheme for RGB-D salient object detection. IEEE Trans Image Process. 2020;30:458–71.CrossRef
14.
go back to reference Hattab G, Arnold M, Strenger L, Allan M, Arsentjeva D, Gold O, Simpfendörfer T, Maier-Hein L, Speidel S. Kidney edge detection in laparoscopic image data for computer-assisted surgery. Int J Comput Assist Radiol Surg. 2020;15(3):379–87.CrossRef Hattab G, Arnold M, Strenger L, Allan M, Arsentjeva D, Gold O, Simpfendörfer T, Maier-Hein L, Speidel S. Kidney edge detection in laparoscopic image data for computer-assisted surgery. Int J Comput Assist Radiol Surg. 2020;15(3):379–87.CrossRef
15.
go back to reference Wang S, Kubota T, Siskind JM, Wang J. Salient closed boundary extraction with ratio contour. IEEE Trans Pattern Anal Mach Intell. 2005;27(4):546.CrossRef Wang S, Kubota T, Siskind JM, Wang J. Salient closed boundary extraction with ratio contour. IEEE Trans Pattern Anal Mach Intell. 2005;27(4):546.CrossRef
16.
go back to reference Rulic P, Kramberger I, Kacic Z. Progressive method for color selective edge detection. Opt Eng. 2007;46(3):037004.CrossRef Rulic P, Kramberger I, Kacic Z. Progressive method for color selective edge detection. Opt Eng. 2007;46(3):037004.CrossRef
17.
go back to reference Borga M, Malmgren H, Knutsson H. Fsed-feature selective edge detection. In: Proceedings 15th international conference on pattern recognition, ICPR-2000, vol. 1. IEEE; 2000. p. 229–232. Borga M, Malmgren H, Knutsson H. Fsed-feature selective edge detection. In: Proceedings 15th international conference on pattern recognition, ICPR-2000, vol. 1. IEEE; 2000. p. 229–232.
18.
go back to reference Somandepalli K, Toutios A, Narayanan SS. Semantic edge detection for tracking vocal tract air-tissue boundaries in real-time magnetic resonance images. In: Interspeech. 2017. p. 631–635. Somandepalli K, Toutios A, Narayanan SS. Semantic edge detection for tracking vocal tract air-tissue boundaries in real-time magnetic resonance images. In: Interspeech. 2017. p. 631–635.
19.
go back to reference Qi H, Collins S, Alison Noble J. Upi-net: semantic contour detection in placental ultrasound. In: Proceedings of the IEEE/CVF international conference on computer vision workshops. 2019. Qi H, Collins S, Alison Noble J. Upi-net: semantic contour detection in placental ultrasound. In: Proceedings of the IEEE/CVF international conference on computer vision workshops. 2019.
20.
21.
go back to reference Fiorentino MC, Moccia S, Capparuccini M, Giamberini S, Frontoni E. A regression framework to head-circumference delineation from us fetal images. Comput Methods Programs Biomed. 2021;198:105771.CrossRef Fiorentino MC, Moccia S, Capparuccini M, Giamberini S, Frontoni E. A regression framework to head-circumference delineation from us fetal images. Comput Methods Programs Biomed. 2021;198:105771.CrossRef
22.
go back to reference Zhang T, Suen CY. A fast parallel algorithm for thinning digital patterns. Commun ACM. 1984;27(3):236–9.CrossRef Zhang T, Suen CY. A fast parallel algorithm for thinning digital patterns. Commun ACM. 1984;27(3):236–9.CrossRef
23.
go back to reference Lee T-C, Kashyap RL, Chu C-N. Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP Graph Models Image Process. 1994;56(6):462–78.CrossRef Lee T-C, Kashyap RL, Chu C-N. Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP Graph Models Image Process. 1994;56(6):462–78.CrossRef
24.
go back to reference Silberman N, Hoiem D, Kholi P, Fergus R. Indoor segmentation and support inference from RGBD images. In: ECCV 2012. Silberman N, Hoiem D, Kholi P, Fergus R. Indoor segmentation and support inference from RGBD images. In: ECCV 2012.
26.
go back to reference Gonzalez RC, Woods RE. Digital image processing. 3rd ed. Upper Saddle River: Prentice-Hall Inc; 2006. p. 676–8. Gonzalez RC, Woods RE. Digital image processing. 3rd ed. Upper Saddle River: Prentice-Hall Inc; 2006. p. 676–8.
27.
go back to reference Qian K, Cao S, Bhattacharya P. Skeletonization of gray-scale images by gray weighted distance transform. In: Visual information processing VI, vol. 3074. International Society for Optics and Photonics; 1997. p. 224–228. Qian K, Cao S, Bhattacharya P. Skeletonization of gray-scale images by gray weighted distance transform. In: Visual information processing VI, vol. 3074. International Society for Optics and Photonics; 1997. p. 224–228.
28.
go back to reference Yokoi S, Toriwaki J-I, Fukumura T. An analysis of topological properties of digitized binary pictures using local features. Comput Graph Image Process. 1975;4(1):63–73.CrossRef Yokoi S, Toriwaki J-I, Fukumura T. An analysis of topological properties of digitized binary pictures using local features. Comput Graph Image Process. 1975;4(1):63–73.CrossRef
29.
go back to reference Xiaofeng R, Bo L. Discriminatively trained sparse code gradients for contour detection. In: Advances in neural information processing systems. 2012. p. 584–592. Xiaofeng R, Bo L. Discriminatively trained sparse code gradients for contour detection. In: Advances in neural information processing systems. 2012. p. 584–592.
30.
go back to reference Shen W, Wang X, Wang Y, Bai X, Zhang Z. Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. p. 3982–3991. Shen W, Wang X, Wang Y, Bai X, Zhang Z. Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. p. 3982–3991.
31.
go back to reference Dollár P, Zitnick CL. Structured forests for fast edge detection. In: Proceedings of the IEEE international conference on computer vision. 2013. p. 1841–1848. Dollár P, Zitnick CL. Structured forests for fast edge detection. In: Proceedings of the IEEE international conference on computer vision. 2013. p. 1841–1848.
32.
go back to reference Liu Y, Cheng M-M, Hu X, Wang K, Bai X. Richer convolutional features for edge detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. p. 3000–3009. Liu Y, Cheng M-M, Hu X, Wang K, Bai X. Richer convolutional features for edge detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. p. 3000–3009.
33.
go back to reference He J, Zhang S, Yang M, Shan Y, Huang T. Bi-directional cascade network for perceptual edge detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2019. p. 3828–3837. He J, Zhang S, Yang M, Shan Y, Huang T. Bi-directional cascade network for perceptual edge detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2019. p. 3828–3837.
35.
go back to reference Mély DA, Kim J, McGill M, Guo Y, Serre T. A systematic comparison between visual cues for boundary detection. Vis Res. 2016;120:93–107.CrossRef Mély DA, Kim J, McGill M, Guo Y, Serre T. A systematic comparison between visual cues for boundary detection. Vis Res. 2016;120:93–107.CrossRef
Metadata
Title
Towards improving edge quality using combinatorial optimization and a novel skeletonize algorithm
Authors
Marvin Arnold
Stefanie Speidel
Georges Hattab
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2021
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-021-00650-z

Other articles of this Issue 1/2021

BMC Medical Imaging 1/2021 Go to the issue