Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2023

Open Access 01-12-2023 | Research article

Towards a clinically-based common coordinate framework for the human gut cell atlas: the gut models

Authors: Albert Burger, Richard A. Baldock, David J. Adams, Shahida Din, Irene Papatheodorou, Michael Glinka, Bill Hill, Derek Houghton, Mehran Sharghi, Michael Wicks, Mark J. Arends

Published in: BMC Medical Informatics and Decision Making | Issue 1/2023

Login to get access

Abstract

Background

The Human Cell Atlas resource will deliver single cell transcriptome data spatially organised in terms of gross anatomy, tissue location and with images of cellular histology. This will enable the application of bioinformatics analysis, machine learning and data mining revealing an atlas of cell types, sub-types, varying states and ultimately cellular changes related to disease conditions. To further develop the understanding of specific pathological and histopathological phenotypes with their spatial relationships and dependencies, a more sophisticated spatial descriptive framework is required to enable integration and analysis in spatial terms.

Methods

We describe a conceptual coordinate model for the Gut Cell Atlas (small and large intestines). Here, we focus on a Gut Linear Model (1-dimensional representation based on the centreline of the gut) that represents the location semantics as typically used by clinicians and pathologists when describing location in the gut. This knowledge representation is based on a set of standardised gut anatomy ontology terms describing regions in situ, such as ileum or transverse colon, and landmarks, such as ileo-caecal valve or hepatic flexure, together with relative or absolute distance measures. We show how locations in the 1D model can be mapped to and from points and regions in both a 2D model and 3D models, such as a patient's CT scan where the gut has been segmented.

Results

The outputs of this work include 1D, 2D and 3D models of the human gut, delivered through publicly accessible Json and image files. We also illustrate the mappings between models using a demonstrator tool that allows the user to explore the anatomical space of the gut. All data and software is fully open-source and available online.

Conclusions

Small and large intestines have a natural “gut coordinate” system best represented as a 1D centreline through the gut tube, reflecting functional differences. Such a 1D centreline model with landmarks, visualised using viewer software allows interoperable translation to both a 2D anatomogram model and multiple 3D models of the intestines. This permits users to accurately locate samples for data comparison.
Footnotes
1
Please note that these are just examples and do not constitute a comprehensive list of all existing cell atlases and CCFs.
 
Literature
3.
go back to reference Alatab S, Sepanlou SG, Ikuta K, Vahedi H, Bisignano C, Safiri S, et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5:17–30.CrossRef Alatab S, Sepanlou SG, Ikuta K, Vahedi H, Bisignano C, Safiri S, et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5:17–30.CrossRef
4.
go back to reference Narula N, Wong ECL, Dehghan M, Mente A, Rangarajan S, Lanas F, et al. Association of ultra-processed food intake with risk of inflammatory bowel disease: prospective cohort study. BMJ. 2021;374:n1554.CrossRefPubMedPubMedCentral Narula N, Wong ECL, Dehghan M, Mente A, Rangarajan S, Lanas F, et al. Association of ultra-processed food intake with risk of inflammatory bowel disease: prospective cohort study. BMJ. 2021;374:n1554.CrossRefPubMedPubMedCentral
5.
go back to reference Racine A, Carbonnel F, Chan SSM, Hart AR, Bueno-de-Mesquita HB, Oldenburg B, et al. Dietary patterns and risk of inflammatory bowel disease in Europe: results from the EPIC study. Inflamm Bowel Dis. 2016;22:345–54.CrossRefPubMed Racine A, Carbonnel F, Chan SSM, Hart AR, Bueno-de-Mesquita HB, Oldenburg B, et al. Dietary patterns and risk of inflammatory bowel disease in Europe: results from the EPIC study. Inflamm Bowel Dis. 2016;22:345–54.CrossRefPubMed
6.
go back to reference Xia B, Yang M, Nguyen LH, He Q, Zhen J, Yu Y, et al. Regular use of proton pump inhibitor and the risk of inflammatory bowel disease: pooled analysis of 3 prospective cohorts. Gastroenterology. 2021;161:1842-1852.e10.CrossRefPubMed Xia B, Yang M, Nguyen LH, He Q, Zhen J, Yu Y, et al. Regular use of proton pump inhibitor and the risk of inflammatory bowel disease: pooled analysis of 3 prospective cohorts. Gastroenterology. 2021;161:1842-1852.e10.CrossRefPubMed
7.
go back to reference Jones G-R, Lyons M, Plevris N, Jenkinson PW, Bisset C, Burgess C, et al. IBD prevalence in Lothian, Scotland, derived by capture-recapture methodology. Gut. 2019;68:1953–60.CrossRefPubMed Jones G-R, Lyons M, Plevris N, Jenkinson PW, Bisset C, Burgess C, et al. IBD prevalence in Lothian, Scotland, derived by capture-recapture methodology. Gut. 2019;68:1953–60.CrossRefPubMed
8.
go back to reference Lamb CA, Kennedy NA, Raine T, Hendy PA, Smith PJ, Limdi JK, et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut. 2019;68(Suppl 3):s1-106.CrossRefPubMed Lamb CA, Kennedy NA, Raine T, Hendy PA, Smith PJ, Limdi JK, et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut. 2019;68(Suppl 3):s1-106.CrossRefPubMed
9.
go back to reference Lennard-Jones JE, Shivananda S. Clinical uniformity of inflammatory bowel disease a presentation and during the first year of disease in the north and south of Europe. EC-IBD Study Group. Eur J Gastroenterol Hepatol. 1997;9:353–9.CrossRefPubMed Lennard-Jones JE, Shivananda S. Clinical uniformity of inflammatory bowel disease a presentation and during the first year of disease in the north and south of Europe. EC-IBD Study Group. Eur J Gastroenterol Hepatol. 1997;9:353–9.CrossRefPubMed
10.
go back to reference Gajendran M, Loganathan P, Catinella AP, Hashash JG. A comprehensive review and update on Crohn’s disease. Dis-Mon DM. 2018;64:20–57.CrossRefPubMed Gajendran M, Loganathan P, Catinella AP, Hashash JG. A comprehensive review and update on Crohn’s disease. Dis-Mon DM. 2018;64:20–57.CrossRefPubMed
12.
go back to reference Moreno P, Fexova S, George N, Manning J, Miao Z, Mohammed S, et al. Expression atlas update: gene and protein expression in multiple species. Nucleic Acids Res. 2021;50:D129.CrossRefPubMedCentral Moreno P, Fexova S, George N, Manning J, Miao Z, Mohammed S, et al. Expression atlas update: gene and protein expression in multiple species. Nucleic Acids Res. 2021;50:D129.CrossRefPubMedCentral
13.
go back to reference Elmentaite R, Kumasaka N, Roberts K, Fleming A, Dann E, King HW, et al. Cells of the human intestinal tract mapped across space and time. Nature. 2021;597:250–5.CrossRefPubMedPubMedCentral Elmentaite R, Kumasaka N, Roberts K, Fleming A, Dann E, King HW, et al. Cells of the human intestinal tract mapped across space and time. Nature. 2021;597:250–5.CrossRefPubMedPubMedCentral
14.
go back to reference Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single-cell RNA sequencing technologies and applications: a brief overview. Clin Transl Med. 2022;12:e694.CrossRefPubMedPubMedCentral Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single-cell RNA sequencing technologies and applications: a brief overview. Clin Transl Med. 2022;12:e694.CrossRefPubMedPubMedCentral
15.
go back to reference Common Coordinate Framework (CCF) Meeting. 2017. Common Coordinate Framework (CCF) Meeting. 2017.
16.
go back to reference Goldacre B, Morley J. Better, broader, safer: using health data for research and analysis. Department of Health and Social Care; 2022. Goldacre B, Morley J. Better, broader, safer: using health data for research and analysis. Department of Health and Social Care; 2022.
17.
go back to reference Moreno P, Fexova S, George N, Manning JR, Miao Z, Mohammed S, et al. Expression atlas update: gene and protein expression in multiple species. Nucleic Acids Res. 2022;50:D129.CrossRefPubMed Moreno P, Fexova S, George N, Manning JR, Miao Z, Mohammed S, et al. Expression atlas update: gene and protein expression in multiple species. Nucleic Acids Res. 2022;50:D129.CrossRefPubMed
20.
go back to reference Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR). 2015. p. 3431–40. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR). 2015. p. 3431–40.
21.
go back to reference Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical image computing and computer-assisted intervention – MICCAI 2015. Cham: Springer International Publishing; 2015. p. 234–41.CrossRef Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical image computing and computer-assisted intervention – MICCAI 2015. Cham: Springer International Publishing; 2015. p. 234–41.CrossRef
22.
24.
go back to reference Herr BW, Hardi J, Quardokus EM, Bueckle A, Chen L, Wang F, et al. Specimen, biological structure, and spatial ontologies in support of a human reference atlas. 2022. Herr BW, Hardi J, Quardokus EM, Bueckle A, Chen L, Wang F, et al. Specimen, biological structure, and spatial ontologies in support of a human reference atlas. 2022.
25.
go back to reference Börner K, Teichmann SA, Quardokus EM, Gee J, Browne K, Osumi-Sutherland D, et al. Anatomical structures, cell types, and biomarkers tables plus 3D reference organs in support of a human reference atlas. 2021. Börner K, Teichmann SA, Quardokus EM, Gee J, Browne K, Osumi-Sutherland D, et al. Anatomical structures, cell types, and biomarkers tables plus 3D reference organs in support of a human reference atlas. 2021.
26.
go back to reference Haendel MA, Balhoff JP, Bastian FB, Blackburn DC, Blake JA, Bradford Y, et al. Unification of multi-species vertebrate anatomy ontologies for comparative biology in Uberon. J Biomed Semant. 2014;5:21.CrossRef Haendel MA, Balhoff JP, Bastian FB, Blackburn DC, Blake JA, Bradford Y, et al. Unification of multi-species vertebrate anatomy ontologies for comparative biology in Uberon. J Biomed Semant. 2014;5:21.CrossRef
27.
go back to reference Rosse C, Mejino JLV. A reference ontology for biomedical informatics: the foundational model of anatomy. J Biomed Inform. 2003;36:478–500.CrossRefPubMed Rosse C, Mejino JLV. A reference ontology for biomedical informatics: the foundational model of anatomy. J Biomed Inform. 2003;36:478–500.CrossRefPubMed
28.
go back to reference Diehl AD, Meehan TF, Bradford YM, Brush MH, Dahdul WM, Dougall DS, et al. The cell ontology 2016: enhanced content, modularization, and ontology interoperability. J Biomed Semant. 2016;7:44.CrossRef Diehl AD, Meehan TF, Bradford YM, Brush MH, Dahdul WM, Dougall DS, et al. The cell ontology 2016: enhanced content, modularization, and ontology interoperability. J Biomed Semant. 2016;7:44.CrossRef
29.
go back to reference Treuting PM, Arends MJ, Dintzis SM. 11 - upper gastrointestinal tract. In: Treuting PM, Dintzis SM, Montine KS, editors. Comparative anatomy and histology. 2nd ed. San Diego: Academic Press; 2018. p. 191–211.CrossRef Treuting PM, Arends MJ, Dintzis SM. 11 - upper gastrointestinal tract. In: Treuting PM, Dintzis SM, Montine KS, editors. Comparative anatomy and histology. 2nd ed. San Diego: Academic Press; 2018. p. 191–211.CrossRef
30.
go back to reference Treuting PM, Arends MJ, Dintzis SM. 12 - lower gastrointestinal tract. In: Treuting PM, Dintzis SM, Montine KS, editors. Comparative anatomy and histology. 2nd ed. San Diego: Academic Press; 2018. p. 213–28.CrossRef Treuting PM, Arends MJ, Dintzis SM. 12 - lower gastrointestinal tract. In: Treuting PM, Dintzis SM, Montine KS, editors. Comparative anatomy and histology. 2nd ed. San Diego: Academic Press; 2018. p. 213–28.CrossRef
31.
go back to reference Tortora GJ. Principles of anatomy and physiology. 10th ed. New York: J. Wiley & Sons; 2003. Tortora GJ. Principles of anatomy and physiology. 10th ed. New York: J. Wiley & Sons; 2003.
33.
go back to reference Snyder MP, Lin S, Posgai A, Atkinson M, Regev A, Rood J, et al. The human body at cellular resolution: the NIH human biomolecular atlas program. Nature. 2019;574:187–92.CrossRef Snyder MP, Lin S, Posgai A, Atkinson M, Regev A, Rood J, et al. The human body at cellular resolution: the NIH human biomolecular atlas program. Nature. 2019;574:187–92.CrossRef
35.
36.
go back to reference Baldock R, Bard J, Kaufman M, Davidson D. A real mouse for your computer. BioEssays News Rev Mol Cell Dev Biol. 1992;14:501–2.CrossRef Baldock R, Bard J, Kaufman M, Davidson D. A real mouse for your computer. BioEssays News Rev Mol Cell Dev Biol. 1992;14:501–2.CrossRef
38.
go back to reference Wong F, Welten MCM, Anderson C, Bain AA, Liu J, Wicks MN, et al. eChickAtlas: an introduction to the database. Genesis. 2013;51:365–71.CrossRefPubMed Wong F, Welten MCM, Anderson C, Bain AA, Liu J, Wicks MN, et al. eChickAtlas: an introduction to the database. Genesis. 2013;51:365–71.CrossRefPubMed
39.
go back to reference Bradford YM, Van Slyke CE, Ruzicka L, Singer A, Eagle A, Fashena D, et al. Zebrafish information network, the knowledgebase for Danio rerio research. Genetics. 2022;220:iyac016.CrossRefPubMedPubMedCentral Bradford YM, Van Slyke CE, Ruzicka L, Singer A, Eagle A, Fashena D, et al. Zebrafish information network, the knowledgebase for Danio rerio research. Genetics. 2022;220:iyac016.CrossRefPubMedPubMedCentral
40.
go back to reference Kerwin J, Yang Y, Merchan P, Sarma S, Thompson J, Wang X, et al. The HUDSEN atlas: a three-dimensional (3D) spatial framework for studying gene expression in the developing human brain. J Anat. 2010;217:289–99.CrossRefPubMedPubMedCentral Kerwin J, Yang Y, Merchan P, Sarma S, Thompson J, Wang X, et al. The HUDSEN atlas: a three-dimensional (3D) spatial framework for studying gene expression in the developing human brain. J Anat. 2010;217:289–99.CrossRefPubMedPubMedCentral
41.
go back to reference Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489:391–9.CrossRefPubMedPubMedCentral Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489:391–9.CrossRefPubMedPubMedCentral
42.
go back to reference Rood JE, Stuart T, Ghazanfar S, Biancalani T, Fisher E, Butler A, et al. Toward a common coordinate framework for the human body. Cell. 2019;179:1455–67.CrossRefPubMedPubMedCentral Rood JE, Stuart T, Ghazanfar S, Biancalani T, Fisher E, Butler A, et al. Toward a common coordinate framework for the human body. Cell. 2019;179:1455–67.CrossRefPubMedPubMedCentral
43.
go back to reference Börner K, Quardokus EM, Herr II BW, Cross LE, Record EG, Ju Y, et al. Construction and usage of a human body common coordinate framework comprising clinical, semantic, and spatial ontologies. 2020. Börner K, Quardokus EM, Herr II BW, Cross LE, Record EG, Ju Y, et al. Construction and usage of a human body common coordinate framework comprising clinical, semantic, and spatial ontologies. 2020.
45.
go back to reference Eze UC, Bhaduri A, Haeussler M, Nowakowski TJ, Kriegstein AR. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat Neurosci. 2021;24:584–94.CrossRefPubMedPubMedCentral Eze UC, Bhaduri A, Haeussler M, Nowakowski TJ, Kriegstein AR. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat Neurosci. 2021;24:584–94.CrossRefPubMedPubMedCentral
48.
go back to reference Gautam P, Hamashima K, Chen Y, Zeng Y, Makovoz B, Parikh BH, et al. Multi-species single-cell transcriptomic analysis of ocular compartment regulons. Nat Commun. 2021;12:5675.CrossRefPubMedPubMedCentral Gautam P, Hamashima K, Chen Y, Zeng Y, Makovoz B, Parikh BH, et al. Multi-species single-cell transcriptomic analysis of ocular compartment regulons. Nat Commun. 2021;12:5675.CrossRefPubMedPubMedCentral
50.
go back to reference de Bono B, Grenon P, Baldock R, Hunter P. Functional tissue units and their primary tissue motifs in multi-scale physiology. J Biomed Semant. 2013;4:22.CrossRef de Bono B, Grenon P, Baldock R, Hunter P. Functional tissue units and their primary tissue motifs in multi-scale physiology. J Biomed Semant. 2013;4:22.CrossRef
51.
go back to reference Dahdul WM, Cui H, Mabee PM, Mungall CJ, Osumi-Sutherland D, Walls RL, et al. Nose to tail, roots to shoots: spatial descriptors for phenotypic diversity in the biological spatial ontology. J Biomed Semant. 2014;5:34.CrossRef Dahdul WM, Cui H, Mabee PM, Mungall CJ, Osumi-Sutherland D, Walls RL, et al. Nose to tail, roots to shoots: spatial descriptors for phenotypic diversity in the biological spatial ontology. J Biomed Semant. 2014;5:34.CrossRef
Metadata
Title
Towards a clinically-based common coordinate framework for the human gut cell atlas: the gut models
Authors
Albert Burger
Richard A. Baldock
David J. Adams
Shahida Din
Irene Papatheodorou
Michael Glinka
Bill Hill
Derek Houghton
Mehran Sharghi
Michael Wicks
Mark J. Arends
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2023
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-023-02111-9

Other articles of this Issue 1/2023

BMC Medical Informatics and Decision Making 1/2023 Go to the issue