Skip to main content
Top
Published in: Current Neurology and Neuroscience Reports 11/2016

01-11-2016 | Epilepsy (CW Bazil, Section Editor)

Toward a Mechanistic Understanding of Epileptic Networks

Authors: Elliot H. Smith, Catherine A. Schevon

Published in: Current Neurology and Neuroscience Reports | Issue 11/2016

Login to get access

Abstract

Focal epileptic seizures have long been considered to arise from a small susceptible brain area and spread through uninvolved regions. In the past decade, the idea that focal seizures instead arise from coordinated activity across large-scale epileptic networks has become widely accepted. Understanding the network model’s applicability is critical, due to its increasing influence on clinical research and surgical treatment paradigms. In this review, we examine the origins of the concept of epileptic networks as the nidus for recurring seizures. We summarize analytical and methodological elements of epileptic network studies and discuss findings from recent detailed electrophysiological investigations. Our review highlights the strengths and limitations of the epileptic network theory as a metaphor for the complex interactions that occur during seizures. We present lines of investigation that may usefully probe these interactions and thus serve to advance our understanding of the long-range effects of epileptiform activity.
Literature
2.
go back to reference Feindel W, Leblanc R, de Almeida AN. Epilepsy surgery: historical highlights 1909-2009. Epilepsia. 2009;50 Suppl 3:131–51.CrossRefPubMed Feindel W, Leblanc R, de Almeida AN. Epilepsy surgery: historical highlights 1909-2009. Epilepsia. 2009;50 Suppl 3:131–51.CrossRefPubMed
3.
go back to reference Penfield W, Jasper H. Epilepsy and the functional anatomy of the human brain. Boston: Little, Brown & Co; 1954. Penfield W, Jasper H. Epilepsy and the functional anatomy of the human brain. Boston: Little, Brown & Co; 1954.
4.
go back to reference Tellez-Zenteno JF, Hernández Ronquillo L, Moien-Afshari F, Wiebe S. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res. 2010;89:310–8.CrossRefPubMed Tellez-Zenteno JF, Hernández Ronquillo L, Moien-Afshari F, Wiebe S. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res. 2010;89:310–8.CrossRefPubMed
5.
go back to reference McGovern RA, Banks GP, McKhann GM. New techniques and progress in epilepsy surgery. Curr Neurol Neurosci Rep. Springer US; 2016;16:65. McGovern RA, Banks GP, McKhann GM. New techniques and progress in epilepsy surgery. Curr Neurol Neurosci Rep. Springer US; 2016;16:65.
6.
go back to reference Kang JY, Wu C, Tracy J, Lorenzo M, Evans J, Nei M, et al. Laser interstitial thermal therapy for medically intractable mesial temporal lobe epilepsy. Epilepsia. 2016;57:325–34.CrossRefPubMed Kang JY, Wu C, Tracy J, Lorenzo M, Evans J, Nei M, et al. Laser interstitial thermal therapy for medically intractable mesial temporal lobe epilepsy. Epilepsia. 2016;57:325–34.CrossRefPubMed
7.
go back to reference Bragin A, Wilson CL, Engel J. Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis. Epilepsia. Blackwell Publishing Ltd; 2000;41:S144–52. Bragin A, Wilson CL, Engel J. Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis. Epilepsia. Blackwell Publishing Ltd; 2000;41:S144–52.
8.
go back to reference Jacobs J, LeVan P, Châtillon C-É, Olivier A, Dubeau F, Gotman J. High frequency oscillations in intracranial EEGs mark epileptogenicity rather than lesion type. Brain. Oxford University Press; 2009;132:1022–37. Jacobs J, LeVan P, Châtillon C-É, Olivier A, Dubeau F, Gotman J. High frequency oscillations in intracranial EEGs mark epileptogenicity rather than lesion type. Brain. Oxford University Press; 2009;132:1022–37.
9.
go back to reference Modur PN, Vitaz TW, Zhang S. Seizure localization using broadband EEG: comparison of conventional frequency activity, high-frequency oscillations, and infraslow activity. J Clin Neurophysiol. 2012;29:309–19.CrossRefPubMedPubMedCentral Modur PN, Vitaz TW, Zhang S. Seizure localization using broadband EEG: comparison of conventional frequency activity, high-frequency oscillations, and infraslow activity. J Clin Neurophysiol. 2012;29:309–19.CrossRefPubMedPubMedCentral
10.•
go back to reference Weiss SA, Lemesiou A, Connors R, Banks GP, McKhann GM, Goodman RR, et al. Seizure localization using ictal phase-locked high gamma: a retrospective surgical outcome study. Neurology. Lippincott Williams & Wilkins; 2015;84:2320–8. Surgical outcome study providing support for the concept of the seizure core as a driver of ictal activity. Weiss SA, Lemesiou A, Connors R, Banks GP, McKhann GM, Goodman RR, et al. Seizure localization using ictal phase-locked high gamma: a retrospective surgical outcome study. Neurology. Lippincott Williams & Wilkins; 2015;84:2320–8. Surgical outcome study providing support for the concept of the seizure core as a driver of ictal activity.
11.
go back to reference Spencer S, Huh L. Outcomes of epilepsy surgery in adults and children. The Lancet Neurology. 2008;7:525–37.CrossRefPubMed Spencer S, Huh L. Outcomes of epilepsy surgery in adults and children. The Lancet Neurology. 2008;7:525–37.CrossRefPubMed
12.
go back to reference Spencer SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia. 2002;43:219–27.CrossRefPubMed Spencer SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia. 2002;43:219–27.CrossRefPubMed
13.
14.
go back to reference Trevelyan AJ, Sussillo D, Yuste R. Feedforward inhibition contributes to the control of epileptiform propagation speed. Journal of Neuroscience. 2007;27:3383–7.CrossRefPubMed Trevelyan AJ, Sussillo D, Yuste R. Feedforward inhibition contributes to the control of epileptiform propagation speed. Journal of Neuroscience. 2007;27:3383–7.CrossRefPubMed
15.
go back to reference Simler S, Hirsch E, Danober L, Motte J, Vergnes M, Marescaux C. C-fos expression after single and kindled audiogenic seizures in Wistar rats. Neurosci Lett. 1994;175:58–62.CrossRefPubMed Simler S, Hirsch E, Danober L, Motte J, Vergnes M, Marescaux C. C-fos expression after single and kindled audiogenic seizures in Wistar rats. Neurosci Lett. 1994;175:58–62.CrossRefPubMed
16.
go back to reference Hamil NE, Cock HR, Walker MC. Acute down-regulation of adenosine A(1) receptor activity in status epilepticus. Epilepsia. 2012;53:177–88.CrossRefPubMed Hamil NE, Cock HR, Walker MC. Acute down-regulation of adenosine A(1) receptor activity in status epilepticus. Epilepsia. 2012;53:177–88.CrossRefPubMed
17.
go back to reference Bullmore E, Sporns O. The economy of brain network organization. Nat Rev Neurosci. Nature Publishing Group; 2012;13:336–49. Bullmore E, Sporns O. The economy of brain network organization. Nat Rev Neurosci. Nature Publishing Group; 2012;13:336–49.
19.
go back to reference Reijneveld JC, Ponten SC, Berendse HW, Stam CJ. The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol. 2007;118:2317–31.CrossRefPubMed Reijneveld JC, Ponten SC, Berendse HW, Stam CJ. The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol. 2007;118:2317–31.CrossRefPubMed
20.
go back to reference Yaffe RB, Borger P, Megevand P, Groppe DM, Kramer MA, Chu CJ, et al. Physiology of functional and effective networks in epilepsy. Clin Neurophysiol. 2015;126:227–36.CrossRefPubMed Yaffe RB, Borger P, Megevand P, Groppe DM, Kramer MA, Chu CJ, et al. Physiology of functional and effective networks in epilepsy. Clin Neurophysiol. 2015;126:227–36.CrossRefPubMed
22.
go back to reference Palmigiano A, Pastor J, de Sola RG, Ortega GJ. Stability of synchronization clusters and seizurability in temporal lobe epilepsy. Chialvo DR, editor. PLoS ONE. Public Library of Science; 2012;7:e41799. Palmigiano A, Pastor J, de Sola RG, Ortega GJ. Stability of synchronization clusters and seizurability in temporal lobe epilepsy. Chialvo DR, editor. PLoS ONE. Public Library of Science; 2012;7:e41799.
23.
go back to reference Schindler KA, Bialonski S, Horstmann M-T, Elger CE, Lehnertz K. Evolving functional network properties and synchronizability during human epileptic seizures. Chaos. 2008;18:033119.CrossRefPubMed Schindler KA, Bialonski S, Horstmann M-T, Elger CE, Lehnertz K. Evolving functional network properties and synchronizability during human epileptic seizures. Chaos. 2008;18:033119.CrossRefPubMed
24.
go back to reference Burns SP, Santaniello S, Yaffe RB, Jouny CC, Crone NE, Bergey GK, et al. Network dynamics of the brain and influence of the epileptic seizure onset zone. Proc Natl Acad Sci USA. National Acad Sciences; 2014;111:E5321–30. Burns SP, Santaniello S, Yaffe RB, Jouny CC, Crone NE, Bergey GK, et al. Network dynamics of the brain and influence of the epileptic seizure onset zone. Proc Natl Acad Sci USA. National Acad Sciences; 2014;111:E5321–30.
25.
go back to reference Hao S, Subramanian S, Jordan A, Santaniello S, Yaffe R, Jouny CC, et al. Computing network-based features from intracranial EEG time series data: application to seizure focus localization. Conf Proc IEEE Eng Med Biol Soc IEEE. 2014;2014:5812–5. Hao S, Subramanian S, Jordan A, Santaniello S, Yaffe R, Jouny CC, et al. Computing network-based features from intracranial EEG time series data: application to seizure focus localization. Conf Proc IEEE Eng Med Biol Soc IEEE. 2014;2014:5812–5.
26.
go back to reference Ramon C, Holmes MD. Spatiotemporal phase clusters and phase synchronization patterns derived from high density EEG and ECoG recordings. Curr Opin Neurobiol. 2015;31:127–32.CrossRefPubMed Ramon C, Holmes MD. Spatiotemporal phase clusters and phase synchronization patterns derived from high density EEG and ECoG recordings. Curr Opin Neurobiol. 2015;31:127–32.CrossRefPubMed
27.
go back to reference Pereda E, Quiroga RQ, Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals. Progress in Neurobiology. 2005;77:1–37.CrossRefPubMed Pereda E, Quiroga RQ, Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals. Progress in Neurobiology. 2005;77:1–37.CrossRefPubMed
28.
29.
go back to reference Pedersen M, Omidvarnia AH, Walz JM, Jackson GD. Increased segregation of brain networks in focal epilepsy: an fMRI graph theory finding. Neuroimage Clin. 2015;8:536–42.CrossRefPubMedPubMedCentral Pedersen M, Omidvarnia AH, Walz JM, Jackson GD. Increased segregation of brain networks in focal epilepsy: an fMRI graph theory finding. Neuroimage Clin. 2015;8:536–42.CrossRefPubMedPubMedCentral
30.
go back to reference Bassett DS, Bullmore E. Small-world brain networks. The Neuroscientist. SAGE Publications; 2006;12:512–23. Bassett DS, Bullmore E. Small-world brain networks. The Neuroscientist. SAGE Publications; 2006;12:512–23.
31.
go back to reference Kramer MA, Eden UT, Kolaczyk ED, Zepeda R, Eskandar EN, Cash SS. Coalescence and fragmentation of cortical networks during focal seizures. Journal of Neuroscience. 2010;30:10076–85.CrossRefPubMedPubMedCentral Kramer MA, Eden UT, Kolaczyk ED, Zepeda R, Eskandar EN, Cash SS. Coalescence and fragmentation of cortical networks during focal seizures. Journal of Neuroscience. 2010;30:10076–85.CrossRefPubMedPubMedCentral
32.••
go back to reference Smith EH, Liou J-Y, Davis TS, Merricks EM, Kellis SS, Weiss SA, et al. The ictal wavefront is the spatiotemporal source of discharges during spontaneous human seizures. Nature Communications. 2016;7:11098. This article provides evidence for the ictal wavefront as the driver of seizure activity, and details a temporo-spatial structure of epileptiform discharges during seizures.CrossRefPubMedPubMedCentral Smith EH, Liou J-Y, Davis TS, Merricks EM, Kellis SS, Weiss SA, et al. The ictal wavefront is the spatiotemporal source of discharges during spontaneous human seizures. Nature Communications. 2016;7:11098. This article provides evidence for the ictal wavefront as the driver of seizure activity, and details a temporo-spatial structure of epileptiform discharges during seizures.CrossRefPubMedPubMedCentral
33.••
go back to reference Eklund A, Nichols TE, Knutsson H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci USA. National Acad Sciences; 2016:201602413. This article reports the effect of standard assumptions on statistical analyses commonly used to describe network structure. Eklund A, Nichols TE, Knutsson H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci USA. National Acad Sciences; 2016:201602413. This article reports the effect of standard assumptions on statistical analyses commonly used to describe network structure.
34.
go back to reference Stark E, Abeles M. Applying resampling methods to neurophysiological data. J Neurosci Methods. 2005;145:133–44.CrossRefPubMed Stark E, Abeles M. Applying resampling methods to neurophysiological data. J Neurosci Methods. 2005;145:133–44.CrossRefPubMed
35.
go back to reference Ebersole JS. Magnetoencephalography/magnetic source imaging in the assessment of patients with epilepsy. Epilepsia. Blackwell Publishing Ltd; 1997;38:S1–S5. Ebersole JS. Magnetoencephalography/magnetic source imaging in the assessment of patients with epilepsy. Epilepsia. Blackwell Publishing Ltd; 1997;38:S1–S5.
36.
go back to reference Ebersole JS. Ebersole: EEG and MEG dipole source modeling. In: Epilepsy: a comprehensive textbook. Philadelphia: Lippincott Williams and Wilkins; 1998. Ebersole JS. Ebersole: EEG and MEG dipole source modeling. In: Epilepsy: a comprehensive textbook. Philadelphia: Lippincott Williams and Wilkins; 1998.
37.
go back to reference Williams D. A study of thalamic and cortical rhythms in petit mal seizures. Brain. Oxford University Press; 1953;76:50–69. Williams D. A study of thalamic and cortical rhythms in petit mal seizures. Brain. Oxford University Press; 1953;76:50–69.
38.
go back to reference Marcus EM, Watson CW. Bilateral synchronous spike wave electrographic patterns in the cat: interaction of bilateral cortical foci in the intact, the bilateral cortical-callosal, and adiencephalic preparation. Arch Neurol. American Medical Association; 1966;14:601–10. Marcus EM, Watson CW. Bilateral synchronous spike wave electrographic patterns in the cat: interaction of bilateral cortical foci in the intact, the bilateral cortical-callosal, and adiencephalic preparation. Arch Neurol. American Medical Association; 1966;14:601–10.
39.••
go back to reference Paz JT, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K, et al. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nature Publishing Group. Nature Publishing Group; 2013;16:64–70. This article provides evidence that the sensory thalamic nucleus projecting to the seizure focus is a key participant in ictogenesis. Paz JT, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K, et al. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nature Publishing Group. Nature Publishing Group; 2013;16:64–70. This article provides evidence that the sensory thalamic nucleus projecting to the seizure focus is a key participant in ictogenesis.
40.
go back to reference Paz JT, Bryant AS, Peng K, Fenno L, Yizhar O, Frankel WN, et al. A new mode of corticothalamic transmission revealed in the Gria4(-/-) model of absence epilepsy. Nat Neurosci. 2011;14:1167–73.CrossRefPubMedPubMedCentral Paz JT, Bryant AS, Peng K, Fenno L, Yizhar O, Frankel WN, et al. A new mode of corticothalamic transmission revealed in the Gria4(-/-) model of absence epilepsy. Nat Neurosci. 2011;14:1167–73.CrossRefPubMedPubMedCentral
41.
42.
go back to reference Gelinas JN, Khodagholy D, Thesen T, Devinsky O, Buzsáki G. Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy. Nat Med. 2016;22(6):641–8. Gelinas JN, Khodagholy D, Thesen T, Devinsky O, Buzsáki G. Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy. Nat Med. 2016;22(6):641–8.
43.••
go back to reference Trevelyan AJ, Schevon CA. How inhibition influences seizure propagation. Neuropharmacology. Elsevier Ltd; 2013;69:45–54. Review article describing the effects of surround inhibition on seizure spread, and implications for EEG interpretation. Trevelyan AJ, Schevon CA. How inhibition influences seizure propagation. Neuropharmacology. Elsevier Ltd; 2013;69:45–54. Review article describing the effects of surround inhibition on seizure spread, and implications for EEG interpretation.
44.
go back to reference Schevon CA, Weiss SA, McKhann G, Goodman RR, Yuste R, Emerson RG, et al. Evidence of an inhibitory restraint of seizure activity in humans. Nature Communications. 2012;3:1060.CrossRefPubMedPubMedCentral Schevon CA, Weiss SA, McKhann G, Goodman RR, Yuste R, Emerson RG, et al. Evidence of an inhibitory restraint of seizure activity in humans. Nature Communications. 2012;3:1060.CrossRefPubMedPubMedCentral
46.
go back to reference Weiss SA, Banks GP, McKhann GM, Goodman RR, Emerson RG, Trevelyan AJ, et al. Ictal high frequency oscillations distinguish two types of seizure territories in humans. Brain. 2013;136:3796–808.CrossRefPubMedPubMedCentral Weiss SA, Banks GP, McKhann GM, Goodman RR, Emerson RG, Trevelyan AJ, et al. Ictal high frequency oscillations distinguish two types of seizure territories in humans. Brain. 2013;136:3796–808.CrossRefPubMedPubMedCentral
47.
go back to reference Emerson RG, Turner CA, Pedley TA, Walczak TS, Forgione M. Propagation patterns of temporal spikes. Electroencephalography and Clinical Neurophysiology. 1995;94:338–48.CrossRefPubMed Emerson RG, Turner CA, Pedley TA, Walczak TS, Forgione M. Propagation patterns of temporal spikes. Electroencephalography and Clinical Neurophysiology. 1995;94:338–48.CrossRefPubMed
48.
go back to reference Alarcon G, Garcia Seoane JJ, Binnie CD, Martin Miguel MC, Juler J, Polkey CE, et al. Origin and propagation of interictal discharges in the acute electrocorticogram. Implications for pathophysiology and surgical treatment of temporal lobe epilepsy. Brain. 1997;120(Pt 12):2259–82.CrossRefPubMed Alarcon G, Garcia Seoane JJ, Binnie CD, Martin Miguel MC, Juler J, Polkey CE, et al. Origin and propagation of interictal discharges in the acute electrocorticogram. Implications for pathophysiology and surgical treatment of temporal lobe epilepsy. Brain. 1997;120(Pt 12):2259–82.CrossRefPubMed
49.
go back to reference González-Ramírez LR, Ahmed OJ, Cash SS, Wayne CE, Kramer MA. A biologically constrained, mathematical model of cortical wave propagation preceding seizure termination. Honey CJ, editor. PLoS Comput Biol. Public Library of Science; 2015;11:e1004065. González-Ramírez LR, Ahmed OJ, Cash SS, Wayne CE, Kramer MA. A biologically constrained, mathematical model of cortical wave propagation preceding seizure termination. Honey CJ, editor. PLoS Comput Biol. Public Library of Science; 2015;11:e1004065.
50.
go back to reference Franaszczuk PJ, Bergey GK. Application of the directed transfer function method to mesial and lateral onset temporal lobe seizures. Brain Topogr. Kluwer Academic Publishers-Plenum Publishers; 1998;11:13–21. Franaszczuk PJ, Bergey GK. Application of the directed transfer function method to mesial and lateral onset temporal lobe seizures. Brain Topogr. Kluwer Academic Publishers-Plenum Publishers; 1998;11:13–21.
51.
go back to reference Wilke C, Drongelen WV, Kohrman M, He B. Identification of epileptogenic foci from causal analysis of ECoG interictal spike activity. Clinical Neurophysiology. 2009;120:1449–56.CrossRefPubMedPubMedCentral Wilke C, Drongelen WV, Kohrman M, He B. Identification of epileptogenic foci from causal analysis of ECoG interictal spike activity. Clinical Neurophysiology. 2009;120:1449–56.CrossRefPubMedPubMedCentral
52.•
go back to reference Epstein CM, Adhikari BM, Gross R, Willie J, Dhamala M. Application of high‐frequency Granger causality to analysis of epileptic seizures and surgical decision making. Epilepsia. 2014;55:2038–47. Analysis of directional spread patterns in seizures, and discussion of clinical implications.CrossRefPubMed Epstein CM, Adhikari BM, Gross R, Willie J, Dhamala M. Application of high‐frequency Granger causality to analysis of epileptic seizures and surgical decision making. Epilepsia. 2014;55:2038–47. Analysis of directional spread patterns in seizures, and discussion of clinical implications.CrossRefPubMed
53.
go back to reference Bragin A, Claeys P, Vonck K, Van Roost D, Wilson C, Boon P, et al. Analysis of initial slow waves (ISWs) at the seizure onset in patients with drug resistant temporal lobe epilepsy. Epilepsia. Blackwell Publishing Inc; 2007;48:1883–94. Bragin A, Claeys P, Vonck K, Van Roost D, Wilson C, Boon P, et al. Analysis of initial slow waves (ISWs) at the seizure onset in patients with drug resistant temporal lobe epilepsy. Epilepsia. Blackwell Publishing Inc; 2007;48:1883–94.
54.
go back to reference Feldt Muldoon S, Soltesz I, Cossart R. Spatially clustered neuronal assemblies comprise the microstructure of synchrony in chronically epileptic networks. Proc Natl Acad Sci USA. National Acad Sciences; 2013;110:3567–72. Feldt Muldoon S, Soltesz I, Cossart R. Spatially clustered neuronal assemblies comprise the microstructure of synchrony in chronically epileptic networks. Proc Natl Acad Sci USA. National Acad Sciences; 2013;110:3567–72.
55.
go back to reference Morgan RJ, Soltesz I. Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci USA. National Acad Sciences; 2008;105:6179–84. Morgan RJ, Soltesz I. Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci USA. National Acad Sciences; 2008;105:6179–84.
56.
go back to reference Trevelyan AJ, Sussillo D, Watson BO, Yuste R. Modular propagation of epileptiform activity: evidence for an inhibitory veto in neocortex. Journal of Neuroscience. 2006;26:12447–55.CrossRefPubMed Trevelyan AJ, Sussillo D, Watson BO, Yuste R. Modular propagation of epileptiform activity: evidence for an inhibitory veto in neocortex. Journal of Neuroscience. 2006;26:12447–55.CrossRefPubMed
57.
go back to reference Magiorkinis E, Diamantis A, Sidiropoulou K. Hallmarks in the history of epilepsy: from antiquity till the twentieth century. 2011. Magiorkinis E, Diamantis A, Sidiropoulou K. Hallmarks in the history of epilepsy: from antiquity till the twentieth century. 2011.
58.
go back to reference Trevelyan AJ, Baldeweg T, van Drongelen W, Yuste R, Whittington M. The source of after discharge activity in neocortical tonic-clonic epilepsy. Journal of Neuroscience. 2007;27:13513–9.CrossRefPubMed Trevelyan AJ, Baldeweg T, van Drongelen W, Yuste R, Whittington M. The source of after discharge activity in neocortical tonic-clonic epilepsy. Journal of Neuroscience. 2007;27:13513–9.CrossRefPubMed
59.
60.
go back to reference Fauser S, Sisodiya SM, Martinian L, Thom M, Gumbinger C, Huppertz H-J, et al. Multi-focal occurrence of cortical dysplasia in epilepsy patients. Brain. 2009;132(Pt 8):2079–90. Fauser S, Sisodiya SM, Martinian L, Thom M, Gumbinger C, Huppertz H-J, et al. Multi-focal occurrence of cortical dysplasia in epilepsy patients. Brain. 2009;132(Pt 8):2079–90.
61.
go back to reference Afra P, Jouny CC, Bergey GK. Termination patterns of complex partial seizures: an intracranial EEG study. Seizure. 2015;32:9–15.CrossRefPubMed Afra P, Jouny CC, Bergey GK. Termination patterns of complex partial seizures: an intracranial EEG study. Seizure. 2015;32:9–15.CrossRefPubMed
62.
go back to reference Blumenfeld H. What is a seizure network? Long-range network consequences of focal seizures. Adv Exp Med Biol. Springer Netherlands; 2014;813:63–70. Blumenfeld H. What is a seizure network? Long-range network consequences of focal seizures. Adv Exp Med Biol. Springer Netherlands; 2014;813:63–70.
63.
go back to reference Norden AD, Blumenfeld H. The role of subcortical structures in human epilepsy. Epilepsy Behav. 2002;3:219–31.CrossRefPubMed Norden AD, Blumenfeld H. The role of subcortical structures in human epilepsy. Epilepsy Behav. 2002;3:219–31.CrossRefPubMed
64.••
go back to reference Motelow JE, Zhan Q, Mishra AM, et al. Decreased subcortical cholinergic arousal in focal seizures. Neuron. 2015;85(3):561–72. Neuroimaging and rodent electrophysiology study of seizure-induced inhibition of the subcortical arousal system.CrossRefPubMedPubMedCentral Motelow JE, Zhan Q, Mishra AM, et al. Decreased subcortical cholinergic arousal in focal seizures. Neuron. 2015;85(3):561–72. Neuroimaging and rodent electrophysiology study of seizure-induced inhibition of the subcortical arousal system.CrossRefPubMedPubMedCentral
65.
go back to reference Paz JT, Huguenard JR. Microcircuits and their interactions in epilepsy: is the focus out of focus? Nature Publishing Group. Nature Publishing Group; 2015;18:351–9. Paz JT, Huguenard JR. Microcircuits and their interactions in epilepsy: is the focus out of focus? Nature Publishing Group. Nature Publishing Group; 2015;18:351–9.
Metadata
Title
Toward a Mechanistic Understanding of Epileptic Networks
Authors
Elliot H. Smith
Catherine A. Schevon
Publication date
01-11-2016
Publisher
Springer US
Published in
Current Neurology and Neuroscience Reports / Issue 11/2016
Print ISSN: 1528-4042
Electronic ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-016-0701-2

Other articles of this Issue 11/2016

Current Neurology and Neuroscience Reports 11/2016 Go to the issue

Demyelinating Disorders (DN Bourdette and M Cameron, Section Editors)

Hypothalamic Dysfunction and Multiple Sclerosis: Implications for Fatigue and Weight Dysregulation

Epilepsy (CW Bazil, Section Editor)

Treatment of Epilepsy in the Elderly

Headache (RB Halker, Section Editor)

Headaches: a Review of the Role of Dietary Factors

Epilepsy (CW Bazil, Section Editor)

Prevention of Epilepsy: Issues and Innovations