Skip to main content
Top
Published in: Brain Structure and Function 3/2016

Open Access 01-04-2016 | Original Article

Topological organization of connectivity strength in the rat connectome

Authors: Martijn P. van den Heuvel, Lianne H. Scholtens, Marcel A. de Reus

Published in: Brain Structure and Function | Issue 3/2016

Login to get access

Abstract

The mammalian brain is a complex network of anatomically interconnected regions. Animal studies allow for an invasive measurement of the connections of these networks at the macroscale level by means of neuronal tracing of axonal projections, providing a unique opportunity for the formation of detailed ‘connectome maps’. Here we analyzed the macroscale connectome of the rat brain, including detailed information on the macroscale interregional pathways between 67 cortical and subcortical regions as provided by the high-quality, open-access BAMS-II database on rat brain anatomical projections, focusing in particular on the non-uniform distribution of projection strength across pathways. First, network analysis confirmed a small-world, modular and rich club organization of the rat connectome; findings in clear support of previous studies on connectome organization in other mammalian species. More importantly, analyzing network properties of different connection weight classes, we extend previous observations by showing that pathways with different topological roles have significantly different levels of connectivity strength. Among other findings, intramodular connections are shown to display a higher connectivity strength than intermodular connections and hub-to-hub rich club connections are shown to include significantly stronger pathways than connections spanning between peripheral nodes. Furthermore, we show evidence indicating that edges of different weight classes display different topological structures, potentially suggesting varying roles and origins of pathways in the mammalian brain network.
Appendix
Available only for authorised users
Literature
go back to reference Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28(37):9239–9248CrossRefPubMedPubMedCentral Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28(37):9239–9248CrossRefPubMedPubMedCentral
go back to reference Chatterjee N, Sinha S (2008) Understanding the mind of a worm: hierarchical network structure underlying nervous system function in C. elegans. In: Progress in Brain research, vol 168 Chatterjee N, Sinha S (2008) Understanding the mind of a worm: hierarchical network structure underlying nervous system function in C. elegans. In: Progress in Brain research, vol 168
go back to reference Cole MW, Pathak S, Schneider W (2010) Identifying the brain’s most globally connected regions. Neuroimage 49(4):3132–3148CrossRefPubMed Cole MW, Pathak S, Schneider W (2010) Identifying the brain’s most globally connected regions. Neuroimage 49(4):3132–3148CrossRefPubMed
go back to reference Colizza V, Flammini A, Serrano MA, Vespignani A (2006) Detecting rich-club ordering in complex networks. Nat Phys 2:5CrossRef Colizza V, Flammini A, Serrano MA, Vespignani A (2006) Detecting rich-club ordering in complex networks. Nat Phys 2:5CrossRef
go back to reference Collin G, Sporns O, Mandl RC, van den Heuvel MP (2013) Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cereb Cortex [Epub ahead of print] Collin G, Sporns O, Mandl RC, van den Heuvel MP (2013) Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cereb Cortex [Epub ahead of print]
go back to reference Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103(37):13848–13853CrossRefPubMedPubMedCentral Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103(37):13848–13853CrossRefPubMedPubMedCentral
go back to reference de Lange SC, de Reus MA, van den Heuvel MP (2014) The Laplacian spectrum of neural networks. Front Computational Neurosci 7:189CrossRef de Lange SC, de Reus MA, van den Heuvel MP (2014) The Laplacian spectrum of neural networks. Front Computational Neurosci 7:189CrossRef
go back to reference de Reus M, van den Heuvel MP (2013) Rich club organization and intermodular communication in the cat connectome. J Neurosci (In press) de Reus M, van den Heuvel MP (2013) Rich club organization and intermodular communication in the cat connectome. J Neurosci (In press)
go back to reference de Reus MA, Saenger V, Kahn RS, van den Heuvel MP (2014) An edge-centric perspective on the human connectome: link communities in the brain. Philos Trans B (In press) de Reus MA, Saenger V, Kahn RS, van den Heuvel MP (2014) An edge-centric perspective on the human connectome: link communities in the brain. Philos Trans B (In press)
go back to reference Dehaene S, Kerszberg M, Changeux JP (1998) A neuronal model of a global workspace in effortful cognitive tasks. Proc Natl Acad Sci USA 95(24):14529–14534CrossRefPubMedPubMedCentral Dehaene S, Kerszberg M, Changeux JP (1998) A neuronal model of a global workspace in effortful cognitive tasks. Proc Natl Acad Sci USA 95(24):14529–14534CrossRefPubMedPubMedCentral
go back to reference Estrada E, Hatano N (2008) Communicability in complex networks. Phys Rev 77(3 Pt 2):036111 Estrada E, Hatano N (2008) Communicability in complex networks. Phys Rev 77(3 Pt 2):036111
go back to reference Goldman-Rakic PS (1988) Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci 11:137–156CrossRefPubMed Goldman-Rakic PS (1988) Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci 11:137–156CrossRefPubMed
go back to reference Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159CrossRefPubMedPubMedCentral Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159CrossRefPubMedPubMedCentral
go back to reference Harriger L, van den Heuvel MP, Sporns O (2012) Rich club organization of macaque cerebral cortex and its role in network communication. PLoS One 7(9):e46497CrossRefPubMedPubMedCentral Harriger L, van den Heuvel MP, Sporns O (2012) Rich club organization of macaque cerebral cortex and its role in network communication. PLoS One 7(9):e46497CrossRefPubMedPubMedCentral
go back to reference Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387(2):167–178CrossRefPubMed Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387(2):167–178CrossRefPubMed
go back to reference Jones DK (2008) Studying connections in the living human brain with diffusion MRI. Cortex J Devoted Study Nerv Syst Behav 44(8):936–952CrossRef Jones DK (2008) Studying connections in the living human brain with diffusion MRI. Cortex J Devoted Study Nerv Syst Behav 44(8):936–952CrossRef
go back to reference Kaiser M, Hilgetag CC (2006) Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput Biol 2(7):e95CrossRefPubMedPubMedCentral Kaiser M, Hilgetag CC (2006) Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput Biol 2(7):e95CrossRefPubMedPubMedCentral
go back to reference LaMantia AS, Rakic P (1990) Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J Neurosci 10(7):2156–2175PubMed LaMantia AS, Rakic P (1990) Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J Neurosci 10(7):2156–2175PubMed
go back to reference LaMantia AS, Rakic P (1994) Axon overproduction and elimination in the anterior commissure of the developing rhesus monkey. J Comp Neurol 340(3):328–336CrossRefPubMed LaMantia AS, Rakic P (1994) Axon overproduction and elimination in the anterior commissure of the developing rhesus monkey. J Comp Neurol 340(3):328–336CrossRefPubMed
go back to reference Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87(19):198701CrossRefPubMed Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87(19):198701CrossRefPubMed
go back to reference Li L, Hu X, Preuss TM, Glasser MF, Damen FW, Qiu Y, Rilling J (2013) Mapping putative hubs in human, chimpanzee and rhesus macaque connectomes via diffusion tractography. Neuroimage 80:462–474CrossRefPubMedPubMedCentral Li L, Hu X, Preuss TM, Glasser MF, Damen FW, Qiu Y, Rilling J (2013) Mapping putative hubs in human, chimpanzee and rhesus macaque connectomes via diffusion tractography. Neuroimage 80:462–474CrossRefPubMedPubMedCentral
go back to reference Lowe MJ, Beall EB, Sakaie KE, Koenig KA, Stone L, Marrie RA, Phillips MD (2008) Resting state sensorimotor functional connectivity in multiple sclerosis inversely correlates with transcallosal motor pathway transverse diffusivity. Hum Brain Mapp 29(7):818–827CrossRefPubMed Lowe MJ, Beall EB, Sakaie KE, Koenig KA, Stone L, Marrie RA, Phillips MD (2008) Resting state sensorimotor functional connectivity in multiple sclerosis inversely correlates with transcallosal motor pathway transverse diffusivity. Hum Brain Mapp 29(7):818–827CrossRefPubMed
go back to reference Markov NT, Misery P, Falchier A, Lamy C, Vezoli J, Quilodran R, Gariel MA, Giroud P, Ercsey-Ravasz M, Pilaz LJ, Huissoud C, Barone P, Dehay C, Toroczkai Z, Van Essen DC, Kennedy H, Knoblauch K (2011) Weight consistency specifies regularities of macaque cortical networks. Cereb Cortex 21(6):1254–1272CrossRefPubMedPubMedCentral Markov NT, Misery P, Falchier A, Lamy C, Vezoli J, Quilodran R, Gariel MA, Giroud P, Ercsey-Ravasz M, Pilaz LJ, Huissoud C, Barone P, Dehay C, Toroczkai Z, Van Essen DC, Kennedy H, Knoblauch K (2011) Weight consistency specifies regularities of macaque cortical networks. Cereb Cortex 21(6):1254–1272CrossRefPubMedPubMedCentral
go back to reference Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296(5569):910–913CrossRefPubMed Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296(5569):910–913CrossRefPubMed
go back to reference Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508(7495):207–214. doi:10.1038/nature13186 CrossRefPubMed Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508(7495):207–214. doi:10.​1038/​nature13186 CrossRefPubMed
go back to reference Palomero-Gallagher N, Zilles K (2004) Isocortex. In: Paxinos G (ed) The rat nervous system, 3rd edn. Academic Press, Burlington, pp 729–757 Palomero-Gallagher N, Zilles K (2004) Isocortex. In: Paxinos G (ed) The rat nervous system, 3rd edn. Academic Press, Burlington, pp 729–757
go back to reference Pandya DN, Karol EA, Heilbronn D (1971) The topographical distribution of interhemispheric projections in the corpus callosum of the rhesus monkey. Brain Res 32(1):31–43CrossRefPubMed Pandya DN, Karol EA, Heilbronn D (1971) The topographical distribution of interhemispheric projections in the corpus callosum of the rhesus monkey. Brain Res 32(1):31–43CrossRefPubMed
go back to reference Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2(3):10 Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2(3):10
go back to reference Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15(9):1332–1342CrossRefPubMed Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15(9):1332–1342CrossRefPubMed
go back to reference Scannell JW, Blakemore C, Young MP (1995) Analysis of connectivity in the cat cerebral cortex. J Neurosci 15(2):1463–1483PubMed Scannell JW, Blakemore C, Young MP (1995) Analysis of connectivity in the cat cerebral cortex. J Neurosci 15(2):1463–1483PubMed
go back to reference Schamahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, Oxford, pp 485–496CrossRef Schamahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, Oxford, pp 485–496CrossRef
go back to reference Scholtens LH, Schmidt R, de Reus MA, van den Heuvel MP (2014) Linking macroscale graph analytical organization to microscale neuroarchitectonics in the macaque connectome. J Neurosci (In press) Scholtens LH, Schmidt R, de Reus MA, van den Heuvel MP (2014) Linking macroscale graph analytical organization to microscale neuroarchitectonics in the macaque connectome. J Neurosci (In press)
go back to reference Sereno MI, Tootell RB (2005) From monkeys to humans: what do we now know about brain homologies? Curr Opin Neurobiol 15(2):135–144CrossRefPubMed Sereno MI, Tootell RB (2005) From monkeys to humans: what do we now know about brain homologies? Curr Opin Neurobiol 15(2):135–144CrossRefPubMed
go back to reference Shanahan M, Bingman VP, Shimizu T, Wild M, Gunturkun O (2013) Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis. Front Comput Neurosci 7:89CrossRefPubMedPubMedCentral Shanahan M, Bingman VP, Shimizu T, Wild M, Gunturkun O (2013) Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis. Front Comput Neurosci 7:89CrossRefPubMedPubMedCentral
go back to reference Sporns O (2012) Discovering the human connectome. MIT Press, Cambridge Sporns O (2012) Discovering the human connectome. MIT Press, Cambridge
go back to reference Stephan KE, Hilgetag CC, Burns GA, O’Neill MA, Young MP, Kotter R (2000) Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos Trans R Soc Lond B Biol Sci 355(1393):111–126CrossRefPubMedPubMedCentral Stephan KE, Hilgetag CC, Burns GA, O’Neill MA, Young MP, Kotter R (2000) Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos Trans R Soc Lond B Biol Sci 355(1393):111–126CrossRefPubMedPubMedCentral
go back to reference Stephan KE, Kamper L, Bozkurt A, Burns GA, Young MP, Kotter R (2001) Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Philos Trans R Soc Lond B Biol Sci 356(1412):1159–1186CrossRefPubMedPubMedCentral Stephan KE, Kamper L, Bozkurt A, Burns GA, Young MP, Kotter R (2001) Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Philos Trans R Soc Lond B Biol Sci 356(1412):1159–1186CrossRefPubMedPubMedCentral
go back to reference Swanson LW (1992) Brain maps: structure of the rat brain. Elsevier, Amsterdam Swanson LW (1992) Brain maps: structure of the rat brain. Elsevier, Amsterdam
go back to reference Towlson EK, Vertes PE, Ahnert SE, Schafer WR, Bullmore ET (2010) The rich club of the C. elegans neuronal connectome. J Neurosci 33(15):6380–6387CrossRef Towlson EK, Vertes PE, Ahnert SE, Schafer WR, Bullmore ET (2010) The rich club of the C. elegans neuronal connectome. J Neurosci 33(15):6380–6387CrossRef
go back to reference van den Heuvel MP, Hulshoff Pol HE (2010a) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20(8):519–534CrossRefPubMed van den Heuvel MP, Hulshoff Pol HE (2010a) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20(8):519–534CrossRefPubMed
go back to reference van den Heuvel MP, Hulshoff Pol HE (2010b) Specific somatotopic organization of functional connections of the primary motor network during resting-state. Hum Brain Mapp 31(4):13 van den Heuvel MP, Hulshoff Pol HE (2010b) Specific somatotopic organization of functional connections of the primary motor network during resting-state. Hum Brain Mapp 31(4):13
go back to reference van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31(44):11 van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31(44):11
go back to reference van den Heuvel MP, Mandl RC, Luigjes J, Hulshoff Pol HE (2008b) Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J Neurosci 43(28):7 van den Heuvel MP, Mandl RC, Luigjes J, Hulshoff Pol HE (2008b) Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J Neurosci 43(28):7
go back to reference van den Heuvel MP, Stam CJ, Boersma M, Hulshoff Pol HE (2008c) Small-world and scale-free organization of voxel based resting-state functional connectivity in the human brain. Neuroimage 43(3):11 van den Heuvel MP, Stam CJ, Boersma M, Hulshoff Pol HE (2008c) Small-world and scale-free organization of voxel based resting-state functional connectivity in the human brain. Neuroimage 43(3):11
go back to reference van den Heuvel MP, Mandl RCW, Stam CJ, Kahn RS, Hulshoff Pol HE (2010) Aberrant frontal and temperal network structure in schizophrenia: a graph theoretical analysis. J Neurosci 30(47):11 van den Heuvel MP, Mandl RCW, Stam CJ, Kahn RS, Hulshoff Pol HE (2010) Aberrant frontal and temperal network structure in schizophrenia: a graph theoretical analysis. J Neurosci 30(47):11
go back to reference van den Heuvel MP, Kahn RS, Goni J, Sporns O (2012) A high cost, high capacity backbone for global brain communication. Proc Natl Acad Sci USA 28:5 van den Heuvel MP, Kahn RS, Goni J, Sporns O (2012) A high cost, high capacity backbone for global brain communication. Proc Natl Acad Sci USA 28:5
go back to reference van den Heuvel MP, Kersbergen KJ, de Reus MA, Keunen K, Kahn RS, Groenendaal F, de Vries LS, Benders MJ (2014) The neonatal connectome during preterm brain development. Cereb Cortex. doi:10.1093/cercor/bhu095 van den Heuvel MP, Kersbergen KJ, de Reus MA, Keunen K, Kahn RS, Groenendaal F, de Vries LS, Benders MJ (2014) The neonatal connectome during preterm brain development. Cereb Cortex. doi:10.​1093/​cercor/​bhu095
go back to reference Verstraete E, Veldink JH, Mandl RC, van den Berg LH, van den Heuvel MP (2011) Impaired structural motor connectome in amyotrophic lateral sclerosis. PLoS One 6(9):e24239CrossRefPubMedPubMedCentral Verstraete E, Veldink JH, Mandl RC, van den Berg LH, van den Heuvel MP (2011) Impaired structural motor connectome in amyotrophic lateral sclerosis. PLoS One 6(9):e24239CrossRefPubMedPubMedCentral
go back to reference Wahl M, Lauterbach-Soon B, Hattingen E, Jung P, Singer O, Volz S, Klein JC, Steinmetz H, Ziemann U (2007) Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. J Neurosci 27(45):12132–12138CrossRefPubMed Wahl M, Lauterbach-Soon B, Hattingen E, Jung P, Singer O, Volz S, Klein JC, Steinmetz H, Ziemann U (2007) Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. J Neurosci 27(45):12132–12138CrossRefPubMed
go back to reference Zamora-Lopez G, Zhou C, Kurths J (2009) Graph analysis of cortical networks reveals complex anatomical communication substrate. Chaos (Woodbury, NY) 19(1):015117 Zamora-Lopez G, Zhou C, Kurths J (2009) Graph analysis of cortical networks reveals complex anatomical communication substrate. Chaos (Woodbury, NY) 19(1):015117
go back to reference Zamora-Lopez G, Zhou C, Kurths J (2010) Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front Neuroinform 4:1PubMedPubMedCentral Zamora-Lopez G, Zhou C, Kurths J (2010) Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front Neuroinform 4:1PubMedPubMedCentral
Metadata
Title
Topological organization of connectivity strength in the rat connectome
Authors
Martijn P. van den Heuvel
Lianne H. Scholtens
Marcel A. de Reus
Publication date
01-04-2016
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 3/2016
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-015-0999-6

Other articles of this Issue 3/2016

Brain Structure and Function 3/2016 Go to the issue