Skip to main content
Top
Published in: European Radiology 6/2015

01-06-2015 | Musculoskeletal

Topographic deformation patterns of knee cartilage after exercises with high knee flexion: an in vivo 3D MRI study using voxel-based analysis at 3T

Authors: Annie Horng, J. G. Raya, M. Stockinger, M. Notohamiprodjo, M. Pietschmann, U. Hoehne-Hueckstaedt, U. Glitsch, R. Ellegast, K. G. Hering, C. Glaser

Published in: European Radiology | Issue 6/2015

Login to get access

Abstract

Objectives

To implement a novel voxel-based technique to identify statistically significant local cartilage deformation and analyze in-vivo topographic knee cartilage deformation patterns using a voxel-based thickness map approach for high-flexion postures.

Methods

Sagittal 3T 3D-T1w-FLASH-WE-sequences of 10 healthy knees were acquired before and immediately after loading (kneeling/squatting/heel sitting/knee bends). After cartilage segmentation, 3D-reconstruction and 3D-registration, colour-coded deformation maps were generated by voxel-based subtraction of loaded from unloaded datasets to visualize cartilage thickness changes in all knee compartments.

Results

Compression areas were found bifocal at the peripheral medial/caudolateral patella, both posterior femoral condyles and both anterior/central tibiae. Local cartilage thickening were found adjacent to the compression areas. Significant local strain ranged from +13 to -15 %. Changes were most pronounced after squatting, least after knee bends. Shape and location of deformation areas varied slightly with the loading paradigm, but followed a similar pattern consistent between different individuals.

Conclusions

Voxel-based deformation maps identify individual in-vivo load-specific and posture-associated strain distribution in the articular cartilage. The data facilitate understanding individual knee loading properties and contribute to improve biomechanical 3 models. They lay a base to investigate the relationship between cartilage degeneration patterns in common osteoarthritis and areas at risk of cartilage wear due to mechanical loading in work-related activities.

Key points

3D MRI helps differentiate true knee-cartilage deformation from random measurement error
3D MRI maps depict in vivo topographic distribution of cartilage deformation after loading
3D MRI maps depict in vivo intensity of cartilage deformation after loading
Locating cartilage contact areas might aid differentiating common and work-related osteoarthritis
Literature
1.
go back to reference Ateshian GA, Lai WM, Zhu WB, Mow VC (1994) An asymptotic solution for the contact of two biphasic cartilage layers. J Biomech 27:1347–1360CrossRefPubMed Ateshian GA, Lai WM, Zhu WB, Mow VC (1994) An asymptotic solution for the contact of two biphasic cartilage layers. J Biomech 27:1347–1360CrossRefPubMed
2.
go back to reference Mow VC, Holmes MH, Lai WM (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17:377–394CrossRefPubMed Mow VC, Holmes MH, Lai WM (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17:377–394CrossRefPubMed
3.
go back to reference Griffin TM, Guilak F (2005) The role of mechanical loading in the onset and progression of osteoarthritis. Exerc Sport Sci Rev 33:195–200CrossRefPubMed Griffin TM, Guilak F (2005) The role of mechanical loading in the onset and progression of osteoarthritis. Exerc Sport Sci Rev 33:195–200CrossRefPubMed
4.
go back to reference Guilak F (2012) Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol 25:815–823CrossRef Guilak F (2012) Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol 25:815–823CrossRef
5.
go back to reference Eckstein F, Cicuttini F, Raynauld JP, Waterton JC, Peterfy C (2006) Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthr Cartil 14:A46–A75CrossRefPubMed Eckstein F, Cicuttini F, Raynauld JP, Waterton JC, Peterfy C (2006) Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthr Cartil 14:A46–A75CrossRefPubMed
7.
go back to reference Eckstein F, Lemberger B, Gratzke C, Hudelmaier M, Glaser C, Englmeier KH et al (2005) In vivo cartilage deformation after different types of activity and its dependence on physical training status. Ann Rheum Dis 64:291–295CrossRefPubMedCentralPubMed Eckstein F, Lemberger B, Gratzke C, Hudelmaier M, Glaser C, Englmeier KH et al (2005) In vivo cartilage deformation after different types of activity and its dependence on physical training status. Ann Rheum Dis 64:291–295CrossRefPubMedCentralPubMed
8.
go back to reference Eckstein F, Tieschky M, Faber SC, Haubner M, Kolem H, Englmeier KH et al (1998) Effect of physical exercise on cartilage volume and thickness in vivo: MR imaging study. Radiology 207:243–248CrossRefPubMed Eckstein F, Tieschky M, Faber SC, Haubner M, Kolem H, Englmeier KH et al (1998) Effect of physical exercise on cartilage volume and thickness in vivo: MR imaging study. Radiology 207:243–248CrossRefPubMed
9.
go back to reference Eckstein F, Lemberger B, Stammberger T, Englmeier KH, Reiser M (2000) Patellar cartilage deformation in vivo after static versus dynamic loading. J Biomech 33:819–825CrossRefPubMed Eckstein F, Lemberger B, Stammberger T, Englmeier KH, Reiser M (2000) Patellar cartilage deformation in vivo after static versus dynamic loading. J Biomech 33:819–825CrossRefPubMed
10.
go back to reference Hartmann B, Glitsch U, Görgens HW, Grosser V, Weber M, Schürmann J et al (2007) Ein belastungskonformes Schadensbild der Gonarthrose durch Knien oder vergleichbare Kniebelastung? Arbeitsmed Sozialmed Umweltmed 42:64–67 Hartmann B, Glitsch U, Görgens HW, Grosser V, Weber M, Schürmann J et al (2007) Ein belastungskonformes Schadensbild der Gonarthrose durch Knien oder vergleichbare Kniebelastung? Arbeitsmed Sozialmed Umweltmed 42:64–67
11.
go back to reference (2005) Berufskrankheiten-Verordnung - Bekanntmachung des BGMS. BArbBl (10):46 (2005) Berufskrankheiten-Verordnung - Bekanntmachung des BGMS. BArbBl (10):46
12.
go back to reference Ellegast R, Kupfer J, Reinert D (1997) Load weight determination during dynamic working procedures using the pedar foot pressure distribution measuring system. Clin Biomech (Bristol, Avon) 12:S10–S11CrossRef Ellegast R, Kupfer J, Reinert D (1997) Load weight determination during dynamic working procedures using the pedar foot pressure distribution measuring system. Clin Biomech (Bristol, Avon) 12:S10–S11CrossRef
13.
go back to reference Glaser C, Faber S, Eckstein F, Fischer H, Springer V, Heudorfer L et al (2001) Optimization and validation of a rapid high-resolution T1-w 3D FLASH water excitation MRI sequence for the quantitative assessment of articular cartilage volume and thickness. Magn Reson Imaging 19:177–185CrossRefPubMed Glaser C, Faber S, Eckstein F, Fischer H, Springer V, Heudorfer L et al (2001) Optimization and validation of a rapid high-resolution T1-w 3D FLASH water excitation MRI sequence for the quantitative assessment of articular cartilage volume and thickness. Magn Reson Imaging 19:177–185CrossRefPubMed
14.
go back to reference Glocker B, Komodakis N, Paragios N, Glaser C, Tziritas G, Navab N (2007) Primal/dual linear programming and statistical atlases for cartilage segmentation. Med Image Comput Comput Assist Interv 10:536–543PubMed Glocker B, Komodakis N, Paragios N, Glaser C, Tziritas G, Navab N (2007) Primal/dual linear programming and statistical atlases for cartilage segmentation. Med Image Comput Comput Assist Interv 10:536–543PubMed
15.
go back to reference König L, Groher M, Keil A, Glaser C, Reiser M, Navab N (2007) Semi-automatic segmentation of the patellar cartilage in MRI. Bildverarbeitung Die Med :404–408 König L, Groher M, Keil A, Glaser C, Reiser M, Navab N (2007) Semi-automatic segmentation of the patellar cartilage in MRI. Bildverarbeitung Die Med :404–408
16.
go back to reference Raya JG, Horng A, Dietrich O, Weber J, Dinges J, Mutzel E et al (2009) Voxel-based reproducibility of T2 relaxation time in patellar cartilage at 1.5T with a new validated 3D rigid registration algorithm. MAGMA 22:229–239CrossRefPubMed Raya JG, Horng A, Dietrich O, Weber J, Dinges J, Mutzel E et al (2009) Voxel-based reproducibility of T2 relaxation time in patellar cartilage at 1.5T with a new validated 3D rigid registration algorithm. MAGMA 22:229–239CrossRefPubMed
17.
go back to reference Eckstein F, Charles HC, Buck RJ, Kraus VB, Remmers AE, Hudelmaier M et al (2005) Accuracy and precision of quantitative assessment of cartilage morphology by magnetic resonance imaging at 3.0T. Arthritis Rheum 52:3132–3136CrossRefPubMed Eckstein F, Charles HC, Buck RJ, Kraus VB, Remmers AE, Hudelmaier M et al (2005) Accuracy and precision of quantitative assessment of cartilage morphology by magnetic resonance imaging at 3.0T. Arthritis Rheum 52:3132–3136CrossRefPubMed
18.
go back to reference Herberhold C, Faber S, Stammberger T, Steinlechner M, Putz R, Englmeier KH et al (1999) In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading. J Biomech 32:1287–1295CrossRefPubMed Herberhold C, Faber S, Stammberger T, Steinlechner M, Putz R, Englmeier KH et al (1999) In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading. J Biomech 32:1287–1295CrossRefPubMed
19.
go back to reference Bingham JT, Papannagari R, Van de Velde SK, Gross C, Gill TJ, Felson DT et al (2008) In vivo cartilage contact deformation in the healthy human tibiofemoral joint. Rheumatology (Oxford) 47:1622–1627CrossRef Bingham JT, Papannagari R, Van de Velde SK, Gross C, Gill TJ, Felson DT et al (2008) In vivo cartilage contact deformation in the healthy human tibiofemoral joint. Rheumatology (Oxford) 47:1622–1627CrossRef
20.
go back to reference Hehne HJ (1990) Biomechanics of the patellofemoral joint and its clinical relevance. Clin Orthop Relat Res 258:73–85PubMed Hehne HJ (1990) Biomechanics of the patellofemoral joint and its clinical relevance. Clin Orthop Relat Res 258:73–85PubMed
21.
go back to reference Heegaard J, Leyvraz PF, Curnier A, Rakotomanana L, Huiskes R (1995) The biomechanics of the human patella during passive knee flexion. J Biomech 28:1265–1279CrossRefPubMed Heegaard J, Leyvraz PF, Curnier A, Rakotomanana L, Huiskes R (1995) The biomechanics of the human patella during passive knee flexion. J Biomech 28:1265–1279CrossRefPubMed
22.
go back to reference Hinterwimmer S, von Eisenhart-Rothe R, Siebert M, Welsch F, Vogl T, Graichen H (2004) Patella kinematics and patello-femoral contact areas in patients with genu varum and mild osteoarthritis. Clin Biomech (Bristol, Avon) 19:704–710CrossRef Hinterwimmer S, von Eisenhart-Rothe R, Siebert M, Welsch F, Vogl T, Graichen H (2004) Patella kinematics and patello-femoral contact areas in patients with genu varum and mild osteoarthritis. Clin Biomech (Bristol, Avon) 19:704–710CrossRef
23.
go back to reference Nakagawa S, Kadoya Y, Kobayashi A, Tatsumi I, Nishida N, Yamano Y (2003) Kinematics of the patella in deep flexion. Analysis with magnetic resonance imaging. J Bone Joint Surg Am 85-A:1238–1242PubMed Nakagawa S, Kadoya Y, Kobayashi A, Tatsumi I, Nishida N, Yamano Y (2003) Kinematics of the patella in deep flexion. Analysis with magnetic resonance imaging. J Bone Joint Surg Am 85-A:1238–1242PubMed
24.
go back to reference Nakagawa S, Kadoya Y, Todo S, Kobayashi A, Sakamoto H, Freeman MA et al (2000) Tibiofemoral movement 3: full flexion in the living knee studied by MRI. J Bone Joint Surg (Br) 82:1199–1200CrossRef Nakagawa S, Kadoya Y, Todo S, Kobayashi A, Sakamoto H, Freeman MA et al (2000) Tibiofemoral movement 3: full flexion in the living knee studied by MRI. J Bone Joint Surg (Br) 82:1199–1200CrossRef
25.
go back to reference Freeman MA, Pinskerova V (2005) The movement of the normal tibio-femoral joint. J Biomech 38:197–208CrossRefPubMed Freeman MA, Pinskerova V (2005) The movement of the normal tibio-femoral joint. J Biomech 38:197–208CrossRefPubMed
26.
go back to reference Goodfellow J, Hungerford DS, Zindel M (1976) Patello-femoral joint mechanics and pathology. 1. Functional anatomy of the patello-femoral joint. J Bone Joint Surg (Br) 58:287–290 Goodfellow J, Hungerford DS, Zindel M (1976) Patello-femoral joint mechanics and pathology. 1. Functional anatomy of the patello-femoral joint. J Bone Joint Surg (Br) 58:287–290
27.
go back to reference Horng A, Raya J, Zscharn M, Konig L, Notohamiprodjo M, Pietschmann M, et al (2011) Locoregional deformation pattern of the patellar cartilage after different loading types - high-resolution 3D-MRI volumetry at 3T in vivo. Fortschr Röntgenstr Horng A, Raya J, Zscharn M, Konig L, Notohamiprodjo M, Pietschmann M, et al (2011) Locoregional deformation pattern of the patellar cartilage after different loading types - high-resolution 3D-MRI volumetry at 3T in vivo. Fortschr Röntgenstr
28.
go back to reference Cicuttini F, Forbes A, Asbeutah A, Morris K, Stuckey S (2000) Comparison and reproducibility of fast and conventional spoiled gradient-echo magnetic resonance sequences in the determination of knee cartilage volume. J Orthop Res 18:580–584CrossRefPubMed Cicuttini F, Forbes A, Asbeutah A, Morris K, Stuckey S (2000) Comparison and reproducibility of fast and conventional spoiled gradient-echo magnetic resonance sequences in the determination of knee cartilage volume. J Orthop Res 18:580–584CrossRefPubMed
29.
go back to reference Lee TQ, Morris G, Csintalan RP (2003) The influence of tibial and femoral rotation on patellofemoral contact area and pressure. J Orthop Sports Phys Ther 33:686–693CrossRefPubMed Lee TQ, Morris G, Csintalan RP (2003) The influence of tibial and femoral rotation on patellofemoral contact area and pressure. J Orthop Sports Phys Ther 33:686–693CrossRefPubMed
30.
go back to reference Li G, Park SE, DeFrate LE, Schutzer ME, Ji L, Gill TJ et al (2005) The cartilage thickness distribution in the tibiofemoral joint and its correlation with cartilage-to-cartilage contact. Clin Biomech (Bristol, Avon) 20:736–744CrossRef Li G, Park SE, DeFrate LE, Schutzer ME, Ji L, Gill TJ et al (2005) The cartilage thickness distribution in the tibiofemoral joint and its correlation with cartilage-to-cartilage contact. Clin Biomech (Bristol, Avon) 20:736–744CrossRef
31.
go back to reference Liu F, Kozanek M, Hosseini A, Van de Velde SK, Gill TJ, Rubash HE et al In vivo tibiofemoral cartilage deformation during the stance phase of gait. J Biomech 43(4):658–665 Liu F, Kozanek M, Hosseini A, Van de Velde SK, Gill TJ, Rubash HE et al In vivo tibiofemoral cartilage deformation during the stance phase of gait. J Biomech 43(4):658–665
32.
go back to reference Froimson MI, Ratcliffe A, Gardner TR, Mow VC (1997) Differences in patellofemoral joint cartilage material properties and their significance to the etiology of cartilage surface fibrillation. Osteoarthr Cartil 5:377–386CrossRefPubMed Froimson MI, Ratcliffe A, Gardner TR, Mow VC (1997) Differences in patellofemoral joint cartilage material properties and their significance to the etiology of cartilage surface fibrillation. Osteoarthr Cartil 5:377–386CrossRefPubMed
33.
go back to reference Athanasiou KA, Rosenwasser MP, Buckwalter JA, Malinin TI, Mow VC (1991) Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J Orthop Res 9:330–340CrossRefPubMed Athanasiou KA, Rosenwasser MP, Buckwalter JA, Malinin TI, Mow VC (1991) Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J Orthop Res 9:330–340CrossRefPubMed
34.
go back to reference Spahn G, Wittig R (2003) Biomechanical properties (compressive strength and compressive pressure at break) of hyaline cartilage under axial load. Zentralbl Chir 128:78–82CrossRefPubMed Spahn G, Wittig R (2003) Biomechanical properties (compressive strength and compressive pressure at break) of hyaline cartilage under axial load. Zentralbl Chir 128:78–82CrossRefPubMed
35.
go back to reference Walker PS, Arno S, Liang S, Yildirim G, Regatte R, Samuels J et al (2011) Medial osteoarthritis of the knee and its association with the medial meniscus. In. ORS. Long Beach, CA Walker PS, Arno S, Liang S, Yildirim G, Regatte R, Samuels J et al (2011) Medial osteoarthritis of the knee and its association with the medial meniscus. In. ORS. Long Beach, CA
Metadata
Title
Topographic deformation patterns of knee cartilage after exercises with high knee flexion: an in vivo 3D MRI study using voxel-based analysis at 3T
Authors
Annie Horng
J. G. Raya
M. Stockinger
M. Notohamiprodjo
M. Pietschmann
U. Hoehne-Hueckstaedt
U. Glitsch
R. Ellegast
K. G. Hering
C. Glaser
Publication date
01-06-2015
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 6/2015
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-014-3545-7

Other articles of this Issue 6/2015

European Radiology 6/2015 Go to the issue