Skip to main content
Top
Published in: Insights into Imaging 1/2012

Open Access 01-02-2012 | Pictorial Review

Tomosynthesis in pulmonary cystic fibrosis with comparison to radiography and computed tomography: a pictorial review

Authors: Kristina Vult von Steyern, Isabella Björkman-Burtscher, Mats Geijer

Published in: Insights into Imaging | Issue 1/2012

Login to get access

Abstract

The purpose of this pictorial review is to illustrate chest imaging findings of cystic fibrosis (CF) using tomosynthesis (digital tomography), in comparison to radiography and computed tomography (CT). CF is a chronic systemic disease where imaging has long been used for monitoring chest status. CT exposes the patient to a substantially higher radiation dose than radiography, rendering it unsuitable for the often needed repeated examinations of these patients. Tomosynthesis has recently appeared as an interesting low dose alternative to CT, with an effective dose of approximately 0.08 mSv for children and 0.12 mSv for adults. Tomosynthesis is performed on the same X-ray system as radiography, adding only about 1 min to the normal examination time. Typical pulmonary changes in CF such as mucus plugging, bronchial wall thickening, and bronchiectases are shown in significantly better detail with tomosynthesis than with traditional radiography. In addition, the cost for a tomosynthesis examination is low compared to CT. To reduce the radiation burden of patients with CF it is important to consider low dose alternatives to CT, especially in the paediatric population. Tomosynthesis has a lower radiation dose than CT and gives a superior visualisation of pulmonary CF changes compared to radiography. It is important to further determine the role of tomosynthesis for monitoring disease progression in CF.
Literature
1.
go back to reference De Jong P, Nakano Y, Lequin M et al (2004) Progressive damage on high resolution computed tomography despite stable lung function in cystic fibrosis. Eur Respir J 23:93–97PubMedCrossRef De Jong P, Nakano Y, Lequin M et al (2004) Progressive damage on high resolution computed tomography despite stable lung function in cystic fibrosis. Eur Respir J 23:93–97PubMedCrossRef
3.
go back to reference Saavedra M, Lynch D (2009) Emerging roles for CT imaging in cystic fibrosis. Radiology 252:327–329PubMedCrossRef Saavedra M, Lynch D (2009) Emerging roles for CT imaging in cystic fibrosis. Radiology 252:327–329PubMedCrossRef
4.
go back to reference Linnane B, Robinson P, Ranganathan S, Stick S, Murray C (2008) Role of high-resolution computed tomography in the detection of early cystic fibrosis lung disease. Paediatr Respir Rev 9:168–175PubMedCrossRef Linnane B, Robinson P, Ranganathan S, Stick S, Murray C (2008) Role of high-resolution computed tomography in the detection of early cystic fibrosis lung disease. Paediatr Respir Rev 9:168–175PubMedCrossRef
5.
go back to reference Dobbins J, Godfrey D (2003) Digital x-ray tomosynthesis: current state of the art and clinical potential. Phys Med Biol 48:R65–R106PubMedCrossRef Dobbins J, Godfrey D (2003) Digital x-ray tomosynthesis: current state of the art and clinical potential. Phys Med Biol 48:R65–R106PubMedCrossRef
6.
go back to reference Vikgren J, Zachrisson S, Svalkvist A et al (2008) Comparison of chest tomosynthesis and chest radiography for detection of pulmonary nodules: human observer study of clinical cases. Radiology 249:1034–1041PubMedCrossRef Vikgren J, Zachrisson S, Svalkvist A et al (2008) Comparison of chest tomosynthesis and chest radiography for detection of pulmonary nodules: human observer study of clinical cases. Radiology 249:1034–1041PubMedCrossRef
7.
go back to reference Kim E, Chung M, Lee H, Koh W, Jung H, Lee K (2010) Pulmonary mycobacterial disease: diagnostic performance of low-dose digital tomosynthesis as compared with chest radiography. Radiology 257:269–277PubMedCrossRef Kim E, Chung M, Lee H, Koh W, Jung H, Lee K (2010) Pulmonary mycobacterial disease: diagnostic performance of low-dose digital tomosynthesis as compared with chest radiography. Radiology 257:269–277PubMedCrossRef
8.
go back to reference Zachrisson S, Vikgren J, Svalkvist A et al (2009) Effect of clinical experience of chest tomosynthesis on detection of pulmonary nodules. Acta Radiol 50:884–891PubMedCrossRef Zachrisson S, Vikgren J, Svalkvist A et al (2009) Effect of clinical experience of chest tomosynthesis on detection of pulmonary nodules. Acta Radiol 50:884–891PubMedCrossRef
9.
go back to reference Wells I, Raju V, Rowberry B, Johns S, Freeman S, Wells I (2011) Digital tomosynthesis—a new lease of life for the intravenous urogram? Br J Radiol 84:464–468PubMedPubMedCentralCrossRef Wells I, Raju V, Rowberry B, Johns S, Freeman S, Wells I (2011) Digital tomosynthesis—a new lease of life for the intravenous urogram? Br J Radiol 84:464–468PubMedPubMedCentralCrossRef
10.
go back to reference Mermuys K, De Geeter F, Bacher K et al (2010) Digital tomosynthesis in the detection of urolithiasis: diagnostic performance and dosimetry compared with digital radiography with MDCT as the reference standard. AJR Am J Roentgenol 195:161–167PubMedCrossRef Mermuys K, De Geeter F, Bacher K et al (2010) Digital tomosynthesis in the detection of urolithiasis: diagnostic performance and dosimetry compared with digital radiography with MDCT as the reference standard. AJR Am J Roentgenol 195:161–167PubMedCrossRef
11.
go back to reference Mermuys K, Vanslambrouck K, Goubau J, Steyaert L, Casselman JW (2008) Use of digital tomosynthesis: case report of a suspected scaphoid fracture and technique. Skelet Radiol 37:569–572CrossRef Mermuys K, Vanslambrouck K, Goubau J, Steyaert L, Casselman JW (2008) Use of digital tomosynthesis: case report of a suspected scaphoid fracture and technique. Skelet Radiol 37:569–572CrossRef
12.
go back to reference Geijer M, Börjesson AM, Göthlin JH (2011) Clinical utility of tomosynthesis in suspected scaphoid fracture. A pilot study. Skelet Radiol 40:863–867CrossRef Geijer M, Börjesson AM, Göthlin JH (2011) Clinical utility of tomosynthesis in suspected scaphoid fracture. A pilot study. Skelet Radiol 40:863–867CrossRef
13.
go back to reference Båth M, Svalqvist A, von Wrangel A, Rismyhr-Olsson H, Cederblad Å (2010) Effective dose to patients from chest examinations with tomosynthesis. Radiat Prot Dosim 139:153–158CrossRef Båth M, Svalqvist A, von Wrangel A, Rismyhr-Olsson H, Cederblad Å (2010) Effective dose to patients from chest examinations with tomosynthesis. Radiat Prot Dosim 139:153–158CrossRef
14.
go back to reference Cole P, Suppl. A (1997) The damaging role of bacteria in chronic lung infection. J Antimicrob Chemother 40:5–10PubMedCrossRef Cole P, Suppl. A (1997) The damaging role of bacteria in chronic lung infection. J Antimicrob Chemother 40:5–10PubMedCrossRef
16.
go back to reference de Jong P, Tiddens H (2007) Cystic fibrosis specific computed tomography scoring. Proc Am Thorac Soc 4:338–342 de Jong P, Tiddens H (2007) Cystic fibrosis specific computed tomography scoring. Proc Am Thorac Soc 4:338–342
17.
go back to reference Koscik R, Kosorok M, Farrell P et al (2000) Wisconsin cystic fibrosis chest radiograph scoring system: validation and standardization for application to longitudinal studies. Pediatr Pulmonol 29:457–467PubMedCrossRef Koscik R, Kosorok M, Farrell P et al (2000) Wisconsin cystic fibrosis chest radiograph scoring system: validation and standardization for application to longitudinal studies. Pediatr Pulmonol 29:457–467PubMedCrossRef
19.
go back to reference Donadieu J, Roudier C, Saguintaah M, Maccia C, Chiron R (2007) Estimation of the radiation dose from thoracic CT scans in a cystic fibrosis population. Chest 132:1233–1238PubMedCrossRef Donadieu J, Roudier C, Saguintaah M, Maccia C, Chiron R (2007) Estimation of the radiation dose from thoracic CT scans in a cystic fibrosis population. Chest 132:1233–1238PubMedCrossRef
20.
go back to reference McCollough CH, Bruesewitz MR, Kofler JM (2006) CT dose reduction and dose management tools: overview of available options. Radiographics 26:503–512PubMedCrossRef McCollough CH, Bruesewitz MR, Kofler JM (2006) CT dose reduction and dose management tools: overview of available options. Radiographics 26:503–512PubMedCrossRef
21.
go back to reference Yu L, Bruesewitz MR, Thomas KB, Fletcher JG, Kofler JM, McCollough CH (2011) Optimal tube potential for radiation dose reduction in pediatric CT: principles, clinical implementations, and pitfalls. Radiographics 31:835–848PubMedCrossRef Yu L, Bruesewitz MR, Thomas KB, Fletcher JG, Kofler JM, McCollough CH (2011) Optimal tube potential for radiation dose reduction in pediatric CT: principles, clinical implementations, and pitfalls. Radiographics 31:835–848PubMedCrossRef
22.
go back to reference Allen BC, Baker ME, Einstein DM et al (2010) Effect of altering automatic exposure control settings and quality reference mAs on radiation dose, image quality, and diagnostic efficacy in MDCT enterography of active inflammatory Crohn’s disease. AJR Am J Roentgenol 195:89–100PubMedCrossRef Allen BC, Baker ME, Einstein DM et al (2010) Effect of altering automatic exposure control settings and quality reference mAs on radiation dose, image quality, and diagnostic efficacy in MDCT enterography of active inflammatory Crohn’s disease. AJR Am J Roentgenol 195:89–100PubMedCrossRef
23.
go back to reference Lucaya J, Piqueras J, Garcia-Pena P, Enriquez G, Garcia-Macias M, Sotil J (2000) Low-dose high-resolution CT of the chest in children and young adults: dose, cooperation, artifact incidence, and image quality. AJR Am J Roentgenol 175:985–992PubMedCrossRef Lucaya J, Piqueras J, Garcia-Pena P, Enriquez G, Garcia-Macias M, Sotil J (2000) Low-dose high-resolution CT of the chest in children and young adults: dose, cooperation, artifact incidence, and image quality. AJR Am J Roentgenol 175:985–992PubMedCrossRef
24.
go back to reference Brody A, Tiddens H, Castile R et al (2005) Computed tomography in the evaluation of cystic fibrosis lung disease. Am J Resp Crit Care Med 172:1246–1252PubMedCrossRef Brody A, Tiddens H, Castile R et al (2005) Computed tomography in the evaluation of cystic fibrosis lung disease. Am J Resp Crit Care Med 172:1246–1252PubMedCrossRef
25.
go back to reference Bacher K, Smeets P, Bonnarens K (2003) Dose reduction in patients undergoing chest imaging: digital amorphous silicon flat-panel detector radiography versus conventional film-screen radiography and phosphor-based computed radiography. AJR Am J Roentgenol 181:923–929PubMedCrossRef Bacher K, Smeets P, Bonnarens K (2003) Dose reduction in patients undergoing chest imaging: digital amorphous silicon flat-panel detector radiography versus conventional film-screen radiography and phosphor-based computed radiography. AJR Am J Roentgenol 181:923–929PubMedCrossRef
Metadata
Title
Tomosynthesis in pulmonary cystic fibrosis with comparison to radiography and computed tomography: a pictorial review
Authors
Kristina Vult von Steyern
Isabella Björkman-Burtscher
Mats Geijer
Publication date
01-02-2012
Publisher
Springer Berlin Heidelberg
Published in
Insights into Imaging / Issue 1/2012
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1007/s13244-011-0137-9

Other articles of this Issue 1/2012

Insights into Imaging 1/2012 Go to the issue