Skip to main content
Top
Published in: Breast Cancer Research 6/2014

Open Access 01-12-2014 | Research article

Toca-1 is suppressed by p53 to limit breast cancer cell invasion and tumor metastasis

Authors: Harish Chander, Colin D Brien, Peter Truesdell, Kathleen Watt, Jalna Meens, Colleen Schick, Doris Germain, Andrew WB Craig

Published in: Breast Cancer Research | Issue 6/2014

Login to get access

Abstract

Introduction

Transducer of Cdc42-dependent actin assembly-1 (Toca-1) recruits actin regulatory proteins to invadopodia, and promotes breast tumor metastasis. Since metastatic breast tumors frequently harbor mutations in the tumor suppressor p53, we tested whether p53 regulates Toca-1 expression.

Methods

Normal mammary epithelial cells (HBL-100, MCF10A) and breast cancer cell lines expressing wild-type (WT) p53 (DU4475, MTLn3) were treated with camptothecin or Nutlin-3 to stabilize p53 to test effects on Toca-1 mRNA and protein levels. Chromatin immunoprecipitation (ChIP) assays were performed to identify p53 binding site in Toca-1 gene. Stable silencing of p53 and Toca-1 were performed in MTLn3 cells to test effects on invadopodia and cell invasion in vitro, and tumor metastasis in vivo.

Results

We observed that breast cancer cell lines with mutant p53 have high levels of Toca-1 compared to those with WT p53. Stabilization of WT p53 led to further reduction in Toca-1 mRNA and protein levels in normal breast epithelial cells and breast cancer cells. ChIP assays revealed p53 binding within intron 2 of toca1, and reduced histone acetylation within its promoter region upon p53 upregulation or activation. Stable silencing of WT p53 in MTLn3 cells led to increased extracellular matrix degradation and cell invasion compared to control cells. Interestingly, the combined silencing of p53 and Toca-1 led to a partial rescue of these effects of p53 silencing in vitro and reduced lung metastases in mice. In human breast tumors, Toca-1 levels were high in subtypes with frequent p53 mutations, and high Toca-1 transcript levels correlated with increased risk of relapse.

Conclusions

Based on these findings, we conclude that loss of p53 tumor suppressor function in breast cancers leads to upregulation of Toca-1, and results in enhanced risk of developing metastatic disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Buccione R, Caldieri G, Ayala I: Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix. Cancer Met Rev. 2009, 28: 137-49. 10.1007/s10555-008-9176-1.CrossRef Buccione R, Caldieri G, Ayala I: Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix. Cancer Met Rev. 2009, 28: 137-49. 10.1007/s10555-008-9176-1.CrossRef
2.
go back to reference Clark ES, Weaver AM: A new role for cortactin in invadopodia: regulation of protease secretion. Eur J Cell Biol. 2008, 87: 581-90. 10.1016/j.ejcb.2008.01.008.CrossRefPubMedPubMedCentral Clark ES, Weaver AM: A new role for cortactin in invadopodia: regulation of protease secretion. Eur J Cell Biol. 2008, 87: 581-90. 10.1016/j.ejcb.2008.01.008.CrossRefPubMedPubMedCentral
3.
go back to reference Gligorijevic B, Wyckoff J, Yamaguchi H, Wang Y, Roussos ET, Condeelis J: N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors. J Cell Sci. 2012, 125: 724-34. 10.1242/jcs.092726.CrossRefPubMedPubMedCentral Gligorijevic B, Wyckoff J, Yamaguchi H, Wang Y, Roussos ET, Condeelis J: N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors. J Cell Sci. 2012, 125: 724-34. 10.1242/jcs.092726.CrossRefPubMedPubMedCentral
4.
go back to reference Oser M, Yamaguchi H, Mader CC, Bravo-Cordero JJ, Arias M, Chen X, et al: Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation. J Cell Biol. 2009, 186: 571-87. 10.1083/jcb.200812176.CrossRefPubMedPubMedCentral Oser M, Yamaguchi H, Mader CC, Bravo-Cordero JJ, Arias M, Chen X, et al: Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation. J Cell Biol. 2009, 186: 571-87. 10.1083/jcb.200812176.CrossRefPubMedPubMedCentral
5.
go back to reference Stylli SS, Kaye AH, Lock P: Invadopodia: at the cutting edge of tumour invasion. J Clin Neurosci. 2008, 15: 725-37. 10.1016/j.jocn.2008.03.003.CrossRefPubMed Stylli SS, Kaye AH, Lock P: Invadopodia: at the cutting edge of tumour invasion. J Clin Neurosci. 2008, 15: 725-37. 10.1016/j.jocn.2008.03.003.CrossRefPubMed
6.
go back to reference Ho HY, Rohatgi R, Lebensohn AM, Le M, Li J, Gygi SP, et al: Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell. 2004, 118: 203-16. 10.1016/j.cell.2004.06.027.CrossRefPubMed Ho HY, Rohatgi R, Lebensohn AM, Le M, Li J, Gygi SP, et al: Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell. 2004, 118: 203-16. 10.1016/j.cell.2004.06.027.CrossRefPubMed
7.
go back to reference Itoh T, Erdmann KS, Roux A, Habermann B, Werner H, De Camilli P: Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev Cell. 2005, 9: 791-804. 10.1016/j.devcel.2005.11.005.CrossRefPubMed Itoh T, Erdmann KS, Roux A, Habermann B, Werner H, De Camilli P: Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev Cell. 2005, 9: 791-804. 10.1016/j.devcel.2005.11.005.CrossRefPubMed
8.
go back to reference Takano K, Toyooka K, Suetsugu S: EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization. EMBO J. 2008, 27: 2817-28. 10.1038/emboj.2008.216.CrossRefPubMedPubMedCentral Takano K, Toyooka K, Suetsugu S: EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization. EMBO J. 2008, 27: 2817-28. 10.1038/emboj.2008.216.CrossRefPubMedPubMedCentral
9.
go back to reference Aspenstrom P, Fransson A, Richnau N: Pombe Cdc15 homology proteins: regulators of membrane dynamics and the actin cytoskeleton. Trends Biochem Sci. 2006, 31: 670-9. 10.1016/j.tibs.2006.10.001.CrossRefPubMed Aspenstrom P, Fransson A, Richnau N: Pombe Cdc15 homology proteins: regulators of membrane dynamics and the actin cytoskeleton. Trends Biochem Sci. 2006, 31: 670-9. 10.1016/j.tibs.2006.10.001.CrossRefPubMed
10.
go back to reference Giuliani C, Troglio F, Bai Z, Patel FB, Zucconi A, Malabarba MG, et al: Requirements for F-BAR proteins TOCA-1 and TOCA-2 in actin dynamics and membrane trafficking during Caenorhabditis elegans oocyte growth and embryonic epidermal morphogenesis. PLoS Genet. 2009, 5: e1000675-10.1371/journal.pgen.1000675.CrossRefPubMedPubMedCentral Giuliani C, Troglio F, Bai Z, Patel FB, Zucconi A, Malabarba MG, et al: Requirements for F-BAR proteins TOCA-1 and TOCA-2 in actin dynamics and membrane trafficking during Caenorhabditis elegans oocyte growth and embryonic epidermal morphogenesis. PLoS Genet. 2009, 5: e1000675-10.1371/journal.pgen.1000675.CrossRefPubMedPubMedCentral
11.
go back to reference Chander H, Truesdell P, Meens J, Craig AW: Transducer of Cdc42-dependent actin assembly promotes breast cancer invasion and metastasis. Oncogene. 2013, 32: 3080-90. 10.1038/onc.2012.317.CrossRefPubMed Chander H, Truesdell P, Meens J, Craig AW: Transducer of Cdc42-dependent actin assembly promotes breast cancer invasion and metastasis. Oncogene. 2013, 32: 3080-90. 10.1038/onc.2012.317.CrossRefPubMed
12.
go back to reference Bu W, Chou AM, Lim KB, Sudhaharan T, Ahmed S: The Toca-1-N-WASP complex links filopodial formation to endocytosis. J Biol Chem. 2009, 284: 11622-36. 10.1074/jbc.M805940200.CrossRefPubMedPubMedCentral Bu W, Chou AM, Lim KB, Sudhaharan T, Ahmed S: The Toca-1-N-WASP complex links filopodial formation to endocytosis. J Biol Chem. 2009, 284: 11622-36. 10.1074/jbc.M805940200.CrossRefPubMedPubMedCentral
13.
go back to reference Hu J, Troglio F, Mukhopadhyay A, Everingham S, Kwok E, Scita G, et al: F-BAR-containing adaptor CIP4 localizes to early endosomes and regulates epidermal growth factor receptor trafficking and downregulation. Cell Signal. 2009, 21: 1686-97. 10.1016/j.cellsig.2009.07.007.CrossRefPubMed Hu J, Troglio F, Mukhopadhyay A, Everingham S, Kwok E, Scita G, et al: F-BAR-containing adaptor CIP4 localizes to early endosomes and regulates epidermal growth factor receptor trafficking and downregulation. Cell Signal. 2009, 21: 1686-97. 10.1016/j.cellsig.2009.07.007.CrossRefPubMed
14.
go back to reference Hu J, Mukhopadhyay A, Craig AW: Transducer of Cdc42-dependent actin assembly promotes epidermal growth factor-induced cell motility and invasiveness. J Biol Chem. 2011, 286: 2261-72. 10.1074/jbc.M110.157974.CrossRefPubMed Hu J, Mukhopadhyay A, Craig AW: Transducer of Cdc42-dependent actin assembly promotes epidermal growth factor-induced cell motility and invasiveness. J Biol Chem. 2011, 286: 2261-72. 10.1074/jbc.M110.157974.CrossRefPubMed
15.
go back to reference Kobayashi S: Basal-like subtype of breast cancer: a review of its unique characteristics and their clinical significance. Breast Cancer. 2008, 15: 153-8. 10.1007/s12282-008-0034-3.CrossRefPubMed Kobayashi S: Basal-like subtype of breast cancer: a review of its unique characteristics and their clinical significance. Breast Cancer. 2008, 15: 153-8. 10.1007/s12282-008-0034-3.CrossRefPubMed
16.
go back to reference Rakha EA, El-Sayed ME, Reis-Filho J, Ellis IO: Patho-biological aspects of basal-like breast cancer. Breast Cancer Res Treat. 2009, 113: 411-22. 10.1007/s10549-008-9952-1.CrossRefPubMed Rakha EA, El-Sayed ME, Reis-Filho J, Ellis IO: Patho-biological aspects of basal-like breast cancer. Breast Cancer Res Treat. 2009, 113: 411-22. 10.1007/s10549-008-9952-1.CrossRefPubMed
17.
18.
go back to reference Quintavalle M, Elia L, Condorelli G, Courtneidge SA: MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. J Cell Biol. 2010, 189: 13-22. 10.1083/jcb.200912096.CrossRefPubMedPubMedCentral Quintavalle M, Elia L, Condorelli G, Courtneidge SA: MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. J Cell Biol. 2010, 189: 13-22. 10.1083/jcb.200912096.CrossRefPubMedPubMedCentral
19.
go back to reference Mukhopadhyay UK, Eves R, Jia L, Mooney P, Mak AS: p53 suppresses Src-induced podosome and rosette formation and cellular invasiveness through the upregulation of caldesmon. Mol Cell Biol. 2009, 29: 3088-98. 10.1128/MCB.01816-08.CrossRefPubMedPubMedCentral Mukhopadhyay UK, Eves R, Jia L, Mooney P, Mak AS: p53 suppresses Src-induced podosome and rosette formation and cellular invasiveness through the upregulation of caldesmon. Mol Cell Biol. 2009, 29: 3088-98. 10.1128/MCB.01816-08.CrossRefPubMedPubMedCentral
20.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001, 25: 402-8. 10.1006/meth.2001.1262.CrossRefPubMed Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001, 25: 402-8. 10.1006/meth.2001.1262.CrossRefPubMed
21.
go back to reference Espinosa JM, Emerson BM: Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol Cell. 2001, 8: 57-69. 10.1016/S1097-2765(01)00283-0.CrossRefPubMed Espinosa JM, Emerson BM: Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol Cell. 2001, 8: 57-69. 10.1016/S1097-2765(01)00283-0.CrossRefPubMed
22.
go back to reference Le Devedec SE, van Roosmalen W, Maria N, Grimbergen M, Pont C, Lalai R, et al: An improved model to study tumor cell autonomous metastasis programs using MTLn3 cells and the Rag2(-/-) gammac (-/-) mouse. Clin Exp Met. 2009, 26: 673-84. 10.1007/s10585-009-9267-6.CrossRef Le Devedec SE, van Roosmalen W, Maria N, Grimbergen M, Pont C, Lalai R, et al: An improved model to study tumor cell autonomous metastasis programs using MTLn3 cells and the Rag2(-/-) gammac (-/-) mouse. Clin Exp Met. 2009, 26: 673-84. 10.1007/s10585-009-9267-6.CrossRef
23.
go back to reference Chander H, Halpern M, Resnick-Silverman L, Manfredi JJ, Germain D: Skp2B overexpression alters a prohibitin-p53 axis and the transcription of PAPP-A, the protease of insulin-like growth factor binding protein 4. PLoS One. 2011, 6: e22456-10.1371/journal.pone.0022456.CrossRefPubMedPubMedCentral Chander H, Halpern M, Resnick-Silverman L, Manfredi JJ, Germain D: Skp2B overexpression alters a prohibitin-p53 axis and the transcription of PAPP-A, the protease of insulin-like growth factor binding protein 4. PLoS One. 2011, 6: e22456-10.1371/journal.pone.0022456.CrossRefPubMedPubMedCentral
24.
go back to reference Boyle DP, McArt DG, Irwin G, Wilhelm-Benartzi CS, Lioe TF, Sebastian E, et al: The prognostic significance of the aberrant extremes of p53 immunophenotypes in breast cancer. Histopathol. 2014, 65: 340-52. 10.1111/his.12398.CrossRef Boyle DP, McArt DG, Irwin G, Wilhelm-Benartzi CS, Lioe TF, Sebastian E, et al: The prognostic significance of the aberrant extremes of p53 immunophenotypes in breast cancer. Histopathol. 2014, 65: 340-52. 10.1111/his.12398.CrossRef
25.
go back to reference Saint-Ruf C, Nardeux P, Cebrian J, Lacasa M, Lavialle C, Cassingena R: Molecular cloning and characterization of endogenous SV40 DNA from human HBL-100 cells. Intl J Cancer. 1989, 44: 367-72. 10.1002/ijc.2910440230.CrossRef Saint-Ruf C, Nardeux P, Cebrian J, Lacasa M, Lavialle C, Cassingena R: Molecular cloning and characterization of endogenous SV40 DNA from human HBL-100 cells. Intl J Cancer. 1989, 44: 367-72. 10.1002/ijc.2910440230.CrossRef
26.
go back to reference Michalovitz D, Eliyahu D, Oren M: Overproduction of protein p53 contributes to simian virus 40-mediated transformation. Mol Cell Biol. 1986, 6: 3531-6.CrossRefPubMedPubMedCentral Michalovitz D, Eliyahu D, Oren M: Overproduction of protein p53 contributes to simian virus 40-mediated transformation. Mol Cell Biol. 1986, 6: 3531-6.CrossRefPubMedPubMedCentral
27.
go back to reference Strano S, Dell’Orso S, Di Agostino S, Fontemaggi G, Sacchi A, Blandino G: Mutant p53: an oncogenic transcription factor. Oncogene. 2007, 26: 2212-9. 10.1038/sj.onc.1210296.CrossRefPubMed Strano S, Dell’Orso S, Di Agostino S, Fontemaggi G, Sacchi A, Blandino G: Mutant p53: an oncogenic transcription factor. Oncogene. 2007, 26: 2212-9. 10.1038/sj.onc.1210296.CrossRefPubMed
28.
go back to reference Werner H, Karnieli E, Rauscher FJ, LeRoith D: Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene. Proc Natl Acad Sci U S A. 1996, 93: 8318-23. 10.1073/pnas.93.16.8318.CrossRefPubMedPubMedCentral Werner H, Karnieli E, Rauscher FJ, LeRoith D: Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene. Proc Natl Acad Sci U S A. 1996, 93: 8318-23. 10.1073/pnas.93.16.8318.CrossRefPubMedPubMedCentral
29.
go back to reference Ashcroft M, Taya Y, Vousden KH: Stress signals utilize multiple pathways to stabilize p53. Mol Cell Biol. 2000, 20: 3224-33. 10.1128/MCB.20.9.3224-3233.2000.CrossRefPubMedPubMedCentral Ashcroft M, Taya Y, Vousden KH: Stress signals utilize multiple pathways to stabilize p53. Mol Cell Biol. 2000, 20: 3224-33. 10.1128/MCB.20.9.3224-3233.2000.CrossRefPubMedPubMedCentral
30.
go back to reference Allison SJ, Milner J: Loss of p53 has site-specific effects on histone H3 modification, including serine 10 phosphorylation important for maintenance of ploidy. Cancer Res. 2003, 63: 6674-9.PubMed Allison SJ, Milner J: Loss of p53 has site-specific effects on histone H3 modification, including serine 10 phosphorylation important for maintenance of ploidy. Cancer Res. 2003, 63: 6674-9.PubMed
31.
go back to reference Sengupta S, Shimamoto A, Koshiji M, Pedeux R, Rusin M, Spillare EA, et al: Tumor suppressor p53 represses transcription of RECQ4 helicase. Oncogene. 2005, 24: 1738-48. 10.1038/sj.onc.1208380.CrossRefPubMed Sengupta S, Shimamoto A, Koshiji M, Pedeux R, Rusin M, Spillare EA, et al: Tumor suppressor p53 represses transcription of RECQ4 helicase. Oncogene. 2005, 24: 1738-48. 10.1038/sj.onc.1208380.CrossRefPubMed
32.
go back to reference Menendez D, Inga A, Resnick MA: The expanding universe of p53 targets. Nat Rev Cancer. 2009, 9: 724-37. 10.1038/nrc2730.CrossRefPubMed Menendez D, Inga A, Resnick MA: The expanding universe of p53 targets. Nat Rev Cancer. 2009, 9: 724-37. 10.1038/nrc2730.CrossRefPubMed
33.
go back to reference Murphy DA, Courtneidge SA: The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol. 2011, 12: 413-26. 10.1038/nrm3141.CrossRefPubMedPubMedCentral Murphy DA, Courtneidge SA: The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol. 2011, 12: 413-26. 10.1038/nrm3141.CrossRefPubMedPubMedCentral
34.
go back to reference Riley T, Sontag E, Chen P, Levine A: Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 2008, 9: 402-12. 10.1038/nrm2395.CrossRefPubMed Riley T, Sontag E, Chen P, Levine A: Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 2008, 9: 402-12. 10.1038/nrm2395.CrossRefPubMed
35.
go back to reference Wang W, Wyckoff JB, Goswami S, Wang Y, Sidani M, Segall JE, et al: Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res. 2007, 67: 3505-11. 10.1158/0008-5472.CAN-06-3714.CrossRefPubMed Wang W, Wyckoff JB, Goswami S, Wang Y, Sidani M, Segall JE, et al: Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res. 2007, 67: 3505-11. 10.1158/0008-5472.CAN-06-3714.CrossRefPubMed
36.
go back to reference Yamaguchi H, Lorenz M, Kempiak S, Sarmiento C, Coniglio S, Symons M, et al: Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol. 2005, 168: 441-52. 10.1083/jcb.200407076.CrossRefPubMedPubMedCentral Yamaguchi H, Lorenz M, Kempiak S, Sarmiento C, Coniglio S, Symons M, et al: Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol. 2005, 168: 441-52. 10.1083/jcb.200407076.CrossRefPubMedPubMedCentral
37.
go back to reference Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF, et al: Comprehensive molecular portraits of human breast tumours. Nature. 2012, 490: 61-70. 10.1038/nature11412.CrossRef Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF, et al: Comprehensive molecular portraits of human breast tumours. Nature. 2012, 490: 61-70. 10.1038/nature11412.CrossRef
38.
go back to reference Chacon RD, Costanzo MV: Triple-negative breast cancer. Breast Cancer Res. 2010, Suppl 2: S3-10.1186/bcr2574.CrossRef Chacon RD, Costanzo MV: Triple-negative breast cancer. Breast Cancer Res. 2010, Suppl 2: S3-10.1186/bcr2574.CrossRef
39.
go back to reference Cleator S, Heller W, Coombes RC: Triple-negative breast cancer: therapeutic options. Lancet Oncol. 2007, 8: 235-44. 10.1016/S1470-2045(07)70074-8.CrossRefPubMed Cleator S, Heller W, Coombes RC: Triple-negative breast cancer: therapeutic options. Lancet Oncol. 2007, 8: 235-44. 10.1016/S1470-2045(07)70074-8.CrossRefPubMed
40.
go back to reference Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al: An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010, 123: 725-31. 10.1007/s10549-009-0674-9.CrossRefPubMed Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al: An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010, 123: 725-31. 10.1007/s10549-009-0674-9.CrossRefPubMed
41.
go back to reference Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al: Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011, 121: 2750-67. 10.1172/JCI45014.CrossRefPubMedPubMedCentral Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al: Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011, 121: 2750-67. 10.1172/JCI45014.CrossRefPubMedPubMedCentral
42.
go back to reference Rakha EA, Reis-Filho JS, Ellis IO: Basal-like breast cancer: a critical review. J Clin Oncol. 2008, 26: 2568-81. 10.1200/JCO.2007.13.1748.CrossRefPubMed Rakha EA, Reis-Filho JS, Ellis IO: Basal-like breast cancer: a critical review. J Clin Oncol. 2008, 26: 2568-81. 10.1200/JCO.2007.13.1748.CrossRefPubMed
44.
go back to reference Yamashita H, Nishio M, Toyama T, Sugiura H, Zhang Z, Kobayashi S, et al: Coexistence of HER2 over-expression and p53 protein accumulation is a strong prognostic molecular marker in breast cancer. Breast Cancer Res. 2004, 6: R24-30. 10.1186/bcr738.CrossRefPubMed Yamashita H, Nishio M, Toyama T, Sugiura H, Zhang Z, Kobayashi S, et al: Coexistence of HER2 over-expression and p53 protein accumulation is a strong prognostic molecular marker in breast cancer. Breast Cancer Res. 2004, 6: R24-30. 10.1186/bcr738.CrossRefPubMed
45.
go back to reference Ferraro DA, Gaborit N, Maron R, Cohen-Dvashi H, Porat Z, Pareja F, et al: Inhibition of triple-negative breast cancer models by combinations of antibodies to EGFR. Proc Natl Acad Sci U S A. 2013, 110: 1815-20. 10.1073/pnas.1220763110.CrossRefPubMedPubMedCentral Ferraro DA, Gaborit N, Maron R, Cohen-Dvashi H, Porat Z, Pareja F, et al: Inhibition of triple-negative breast cancer models by combinations of antibodies to EGFR. Proc Natl Acad Sci U S A. 2013, 110: 1815-20. 10.1073/pnas.1220763110.CrossRefPubMedPubMedCentral
46.
go back to reference Tryfonopoulos D, Walsh S, Collins DM, Flanagan L, Quinn C, Corkery B, et al: Src: a potential target for the treatment of triple-negative breast cancer. Ann Oncol. 2011, 22: 2234-40. 10.1093/annonc/mdq757.CrossRefPubMed Tryfonopoulos D, Walsh S, Collins DM, Flanagan L, Quinn C, Corkery B, et al: Src: a potential target for the treatment of triple-negative breast cancer. Ann Oncol. 2011, 22: 2234-40. 10.1093/annonc/mdq757.CrossRefPubMed
47.
go back to reference Criscitiello C, Azim HA, Schouten PC, Linn SC, Sotiriou C: Understanding the biology of triple-negative breast cancer. Ann Oncol. 2012, Suppl 6: vi13–vi18- Criscitiello C, Azim HA, Schouten PC, Linn SC, Sotiriou C: Understanding the biology of triple-negative breast cancer. Ann Oncol. 2012, Suppl 6: vi13–vi18-
49.
go back to reference Chin PL, Momand J, Pfeifer GP: In vivo evidence for binding of p53 to consensus binding sites in the p21 and GADD45 genes in response to ionizing radiation. Oncogene. 1997, 15: 87-99. 10.1038/sj.onc.1201161.CrossRefPubMed Chin PL, Momand J, Pfeifer GP: In vivo evidence for binding of p53 to consensus binding sites in the p21 and GADD45 genes in response to ionizing radiation. Oncogene. 1997, 15: 87-99. 10.1038/sj.onc.1201161.CrossRefPubMed
50.
go back to reference Graunke DM, Fornace AJ, Pieper RO: Presetting of chromatin structure and transcription factor binding poise the human GADD45 gene for rapid transcriptional up-regulation. Nucleic Acids Res. 1999, 27: 3881-90. 10.1093/nar/27.19.3881.CrossRefPubMedPubMedCentral Graunke DM, Fornace AJ, Pieper RO: Presetting of chromatin structure and transcription factor binding poise the human GADD45 gene for rapid transcriptional up-regulation. Nucleic Acids Res. 1999, 27: 3881-90. 10.1093/nar/27.19.3881.CrossRefPubMedPubMedCentral
51.
go back to reference Roger L, Gadea G, Roux P: Control of cell migration: a tumour suppressor function for p53?. Biol Cell. 2006, 98: 141-52. 10.1042/BC20050058.CrossRefPubMed Roger L, Gadea G, Roux P: Control of cell migration: a tumour suppressor function for p53?. Biol Cell. 2006, 98: 141-52. 10.1042/BC20050058.CrossRefPubMed
52.
go back to reference Derksen PW, Braumuller TM, van der Burg E, Hornsveld M, Mesman E, Wesseling J, et al: Mammary-specific inactivation of E-cadherin and p53 impairs functional gland development and leads to pleomorphic invasive lobular carcinoma in mice. Dis Model Mech. 2011, 4: 347-58. 10.1242/dmm.006395.CrossRefPubMedPubMedCentral Derksen PW, Braumuller TM, van der Burg E, Hornsveld M, Mesman E, Wesseling J, et al: Mammary-specific inactivation of E-cadherin and p53 impairs functional gland development and leads to pleomorphic invasive lobular carcinoma in mice. Dis Model Mech. 2011, 4: 347-58. 10.1242/dmm.006395.CrossRefPubMedPubMedCentral
53.
go back to reference Moskovits N, Kalinkovich A, Bar J, Lapidot T, Oren M: p53 Attenuates cancer cell migration and invasion through repression of SDF-1/CXCL12 expression in stromal fibroblasts. Cancer Res. 2006, 66: 10671-6. 10.1158/0008-5472.CAN-06-2323.CrossRefPubMed Moskovits N, Kalinkovich A, Bar J, Lapidot T, Oren M: p53 Attenuates cancer cell migration and invasion through repression of SDF-1/CXCL12 expression in stromal fibroblasts. Cancer Res. 2006, 66: 10671-6. 10.1158/0008-5472.CAN-06-2323.CrossRefPubMed
54.
go back to reference Hwang CI, Matoso A, Corney DC, Flesken-Nikitin A, Korner S, Wang W, et al: Wild-type p53 controls cell motility and invasion by dual regulation of MET expression. Proc Natl Acad Sci U S A. 2011, 108: 14240-5. 10.1073/pnas.1017536108.CrossRefPubMedPubMedCentral Hwang CI, Matoso A, Corney DC, Flesken-Nikitin A, Korner S, Wang W, et al: Wild-type p53 controls cell motility and invasion by dual regulation of MET expression. Proc Natl Acad Sci U S A. 2011, 108: 14240-5. 10.1073/pnas.1017536108.CrossRefPubMedPubMedCentral
Metadata
Title
Toca-1 is suppressed by p53 to limit breast cancer cell invasion and tumor metastasis
Authors
Harish Chander
Colin D Brien
Peter Truesdell
Kathleen Watt
Jalna Meens
Colleen Schick
Doris Germain
Andrew WB Craig
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 6/2014
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-014-0503-x

Other articles of this Issue 6/2014

Breast Cancer Research 6/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine