Skip to main content
Top
Published in: Trials 1/2022

Open Access 01-12-2022 | Tinnitus | Study protocol

Transcranial electric and acoustic stimulation for tinnitus: study protocol for a randomized double-blind controlled trial assessing the influence of combined transcranial random noise and acoustic stimulation on tinnitus loudness and distress

Authors: Mariana Lopes Martins, Tobias Kleinjung, Martin Meyer, Vithushika Raveenthiran, Zino Wellauer, Nicole Peter, Patrick Neff

Published in: Trials | Issue 1/2022

Login to get access

Abstract

Background

Tinnitus is the result of aberrant neuronal activity. As a novel treatment form, neuromodulation is used to modify neuronal activity of brain areas involved in tinnitus generation. Among the different forms of electric stimulation, transcranial random noise stimulation (tRNS) has been shown to be a promising treatment option for tinnitus. In addition, recent studies indicate that the reduction in tinnitus can be more pronounced when different modalities of stimulation techniques are combined (“bimodal stimulation”). TRNS can be used in combination with acoustic stimulation (AS), a further treatment option recognized in the literature. The aim of the proposed study is to investigate whether simultaneous tRNS and AS improve levels of tinnitus loudness and distress.

Methods

The intervention consists of bilateral high-definition tRNS (HD-tRNS) over the auditory cortex combined with the application of AS which is studied in a crossover design. The visits will be performed in 26 sessions. There will be 20 treatment sessions, divided into two blocks: active and sham HD-tRNS. Within the blocks, the interventions are divided into group A: HD-tRNS and AS, and group B: HD-tRNS alone. Furthermore, in addition to the assessments directly following the intervention sessions, there will be six extra sessions performed subsequently at the end of each block, after a period of some days (follow-ups 1 and 2) and a month after the last intervention (C). Primary outcome measures are analog scales for evaluation of subjective tinnitus loudness and distress, and the audiological measurement of minimum masking level (MML). Secondary outcome measures are brain activity as measured by electroencephalography and standardized questionnaires for evaluating tinnitus distress and severity.

Discussion

To the best of our knowledge, this is the first study which uses HD-tRNS combined with AS for tinnitus treatment. The crossover design permits the comparison between HD-tRNS active vs. sham and with vs. without AS. Thus, it will be possible to evaluate the efficacy of the combined approach to HD-tRNS alone. In addition, the use of different objective and subjective evaluations for tinnitus enable more reliable and valid results.

Trial registration

Swiss Ethics Committee (BASEC-Nr. 2020-02027); Swiss Federal Complementary Database (kofam.ch: SNCTP000004051); and ClinicalTrials.gov (clinicaltrials.gov: NCT04551404).
Literature
1.
go back to reference Jastreboff PJ. Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res. 1990;8(4):221–54.PubMedCrossRef Jastreboff PJ. Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res. 1990;8(4):221–54.PubMedCrossRef
2.
go back to reference Noreña AJ, Lacher-Fougère S, Fraysse MJ, Bizaguet E, Grevin P, Thai-Van H, et al. A contribution to the debate on tinnitus definition. Prog Brain Res. 2021;262:469–85.PubMedCrossRef Noreña AJ, Lacher-Fougère S, Fraysse MJ, Bizaguet E, Grevin P, Thai-Van H, et al. A contribution to the debate on tinnitus definition. Prog Brain Res. 2021;262:469–85.PubMedCrossRef
3.
go back to reference McCormack A, Edmondson-Jones M, Somerset S, Hall D. A systematic review of the reporting of tinnitus prevalence and severity. Hear Res. 2016;337:70–9.PubMedCrossRef McCormack A, Edmondson-Jones M, Somerset S, Hall D. A systematic review of the reporting of tinnitus prevalence and severity. Hear Res. 2016;337:70–9.PubMedCrossRef
4.
go back to reference Vanneste S, De Ridder D. The auditory and non-auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks. Front Syst Neurosci. 2012;6:31.PubMedPubMedCentralCrossRef Vanneste S, De Ridder D. The auditory and non-auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks. Front Syst Neurosci. 2012;6:31.PubMedPubMedCentralCrossRef
5.
go back to reference Adams ME, Huang TC, Nagarajan S, Cheung SW. Tinnitus neuroimaging. Otolaryngol Clin North Am. 2020;53(4):583–603.PubMedCrossRef Adams ME, Huang TC, Nagarajan S, Cheung SW. Tinnitus neuroimaging. Otolaryngol Clin North Am. 2020;53(4):583–603.PubMedCrossRef
6.
go back to reference Yousef A, Hinkley LB, Nagarajan SS, Cheung SW. Neuroanatomic volume differences in tinnitus and hearing loss. Laryngoscope. 2021;131(8):1863–8.PubMedCrossRef Yousef A, Hinkley LB, Nagarajan SS, Cheung SW. Neuroanatomic volume differences in tinnitus and hearing loss. Laryngoscope. 2021;131(8):1863–8.PubMedCrossRef
7.
go back to reference Meyer M, Neff P, Liem F, Kleinjung T, Weidt S, Langguth B, et al. Differential tinnitus-related neuroplastic alterations of cortical thickness and surface area. Hear Res. 2016;342:1–12.PubMedCrossRef Meyer M, Neff P, Liem F, Kleinjung T, Weidt S, Langguth B, et al. Differential tinnitus-related neuroplastic alterations of cortical thickness and surface area. Hear Res. 2016;342:1–12.PubMedCrossRef
8.
go back to reference Hu J, Cui J, Xu J-J, Yin X, Wu Y, Qi J. The neural mechanisms of tinnitus: a perspective from functional magnetic resonance imaging. Front Neurosci. 2021;15:621145.PubMedPubMedCentralCrossRef Hu J, Cui J, Xu J-J, Yin X, Wu Y, Qi J. The neural mechanisms of tinnitus: a perspective from functional magnetic resonance imaging. Front Neurosci. 2021;15:621145.PubMedPubMedCentralCrossRef
9.
go back to reference Kleinjung T, Langguth B. Avenue for future tinnitus treatments. Otolaryngol Clin North Am. 2020;53(4):667–83.PubMedCrossRef Kleinjung T, Langguth B. Avenue for future tinnitus treatments. Otolaryngol Clin North Am. 2020;53(4):667–83.PubMedCrossRef
10.
go back to reference Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018;21(2):174–87.PubMedCrossRef Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018;21(2):174–87.PubMedCrossRef
11.
go back to reference Paulus W. Transcranial electrical stimulation (tES – tDCS; tRNS, tACS) methods. Neuropsychological Rehabilitation. 2011;21(5):602–17.PubMedCrossRef Paulus W. Transcranial electrical stimulation (tES – tDCS; tRNS, tACS) methods. Neuropsychological Rehabilitation. 2011;21(5):602–17.PubMedCrossRef
12.
go back to reference Reed T, Cohen KR. Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity. J Inherited Metab Dis. 2018;41(6):1123–30.CrossRef Reed T, Cohen KR. Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity. J Inherited Metab Dis. 2018;41(6):1123–30.CrossRef
14.
go back to reference Terney D, Chaieb L, Moliadze V, Antal A, Paulus W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci. 2008;28(52):14147–55.PubMedPubMedCentralCrossRef Terney D, Chaieb L, Moliadze V, Antal A, Paulus W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci. 2008;28(52):14147–55.PubMedPubMedCentralCrossRef
15.
go back to reference Chaieb L, Paulus W, Antal A. Evaluating aftereffects of short-duration transcranial random noise stimulation on cortical excitability. Neural Plasticity. 2011;2011:105927.PubMedPubMedCentralCrossRef Chaieb L, Paulus W, Antal A. Evaluating aftereffects of short-duration transcranial random noise stimulation on cortical excitability. Neural Plasticity. 2011;2011:105927.PubMedPubMedCentralCrossRef
16.
go back to reference Van Doren J, Langguth B, Schecklmann M. Electroencephalographic effects of transcranial random noise stimulation in the auditory cortex. Brain Stimul. 2014;7(6):807–12.PubMedCrossRef Van Doren J, Langguth B, Schecklmann M. Electroencephalographic effects of transcranial random noise stimulation in the auditory cortex. Brain Stimul. 2014;7(6):807–12.PubMedCrossRef
17.
go back to reference Joos K, De Ridder D, Vanneste S. The differential effect of low- versus high-frequency random noise stimulation in the treatment of tinnitus. Exp Brain Res. 2015;233(5):1433–40.PubMedCrossRef Joos K, De Ridder D, Vanneste S. The differential effect of low- versus high-frequency random noise stimulation in the treatment of tinnitus. Exp Brain Res. 2015;233(5):1433–40.PubMedCrossRef
18.
go back to reference Kreuzer PM, Poeppl TB, Rupprecht R, Vielsmeier V, Lehner A, Langguth B, et al. Daily high-frequency transcranial random noise stimulation of bilateral temporal cortex in chronic tinnitus - a pilot study. Sci Rep. 2019;9(1):12274.PubMedPubMedCentralCrossRef Kreuzer PM, Poeppl TB, Rupprecht R, Vielsmeier V, Lehner A, Langguth B, et al. Daily high-frequency transcranial random noise stimulation of bilateral temporal cortex in chronic tinnitus - a pilot study. Sci Rep. 2019;9(1):12274.PubMedPubMedCentralCrossRef
19.
go back to reference Kreuzer PM, Vielsmeier V, Poeppl TB, Langguth B. A case report on red ear syndrome with tinnitus successfully treated with transcranial random noise stimulation. Pain Physician. 2017;20(1):E199–e205.PubMedCrossRef Kreuzer PM, Vielsmeier V, Poeppl TB, Langguth B. A case report on red ear syndrome with tinnitus successfully treated with transcranial random noise stimulation. Pain Physician. 2017;20(1):E199–e205.PubMedCrossRef
20.
go back to reference Mohsen S, Mahmoudian S, Talebian S, Pourbakht A. Multisite transcranial random noise stimulation (tRNS) modulates the distress network activity and oscillatory powers in subjects with chronic tinnitus. J Clin Neurosci. 2019;67:178–84.PubMedCrossRef Mohsen S, Mahmoudian S, Talebian S, Pourbakht A. Multisite transcranial random noise stimulation (tRNS) modulates the distress network activity and oscillatory powers in subjects with chronic tinnitus. J Clin Neurosci. 2019;67:178–84.PubMedCrossRef
21.
go back to reference Mohsen S, Mahmoudian S, Talebian S, Pourbakht A. Prefrontal and auditory tRNS in sequence for treating chronic tinnitus: a modified multisite protocol. Brain Stimulation. 2018;11(5):1177–9.PubMedCrossRef Mohsen S, Mahmoudian S, Talebian S, Pourbakht A. Prefrontal and auditory tRNS in sequence for treating chronic tinnitus: a modified multisite protocol. Brain Stimulation. 2018;11(5):1177–9.PubMedCrossRef
22.
go back to reference Mohsen S, Pourbakht A, Farhadi M, Mahmoudian S. The efficacy and safety of multiple sessions of multisite transcranial random noise stimulation in treating chronic tinnitus. Braz J Otorhinolaryngol. 2019;85(5):628–35.PubMedCrossRef Mohsen S, Pourbakht A, Farhadi M, Mahmoudian S. The efficacy and safety of multiple sessions of multisite transcranial random noise stimulation in treating chronic tinnitus. Braz J Otorhinolaryngol. 2019;85(5):628–35.PubMedCrossRef
23.
go back to reference To WT, Ost J, Hart J Jr, De Ridder D, Vanneste S. The added value of auditory cortex transcranial random noise stimulation (tRNS) after bifrontal transcranial direct current stimulation (tDCS) for tinnitus. J Neural Transm (Vienna). 2017;124(1):79–88.PubMedCrossRef To WT, Ost J, Hart J Jr, De Ridder D, Vanneste S. The added value of auditory cortex transcranial random noise stimulation (tRNS) after bifrontal transcranial direct current stimulation (tDCS) for tinnitus. J Neural Transm (Vienna). 2017;124(1):79–88.PubMedCrossRef
24.
go back to reference Vanneste S, Fregni F, De Ridder D. Head-to-head comparison of transcranial random noise stimulation, transcranial AC stimulation, and transcranial DC stimulation for tinnitus. Front Psychiatry. 2013;4:158.PubMedPubMedCentralCrossRef Vanneste S, Fregni F, De Ridder D. Head-to-head comparison of transcranial random noise stimulation, transcranial AC stimulation, and transcranial DC stimulation for tinnitus. Front Psychiatry. 2013;4:158.PubMedPubMedCentralCrossRef
25.
go back to reference Jastreboff PJ, Hazell JW. A neurophysiological approach to tinnitus: clinical implications. Br J Audiol. 1993;27(1):7–17.PubMedCrossRef Jastreboff PJ, Hazell JW. A neurophysiological approach to tinnitus: clinical implications. Br J Audiol. 1993;27(1):7–17.PubMedCrossRef
26.
go back to reference Tass PA, Adamchic I, Freund H-J, von Stackelberg T, Hauptmann C. Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restor Neurol Neurosci. 2012;30:137–59.PubMed Tass PA, Adamchic I, Freund H-J, von Stackelberg T, Hauptmann C. Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restor Neurol Neurosci. 2012;30:137–59.PubMed
27.
go back to reference Okamoto H, Stracke H, Stoll W, Pantev C. Listening to tailor-made notched music reduces tinnitus loudness and tinnitus-related auditory cortex activity. Proc Natl Acad Sci. 2010;107(3):1207–10.PubMedCrossRef Okamoto H, Stracke H, Stoll W, Pantev C. Listening to tailor-made notched music reduces tinnitus loudness and tinnitus-related auditory cortex activity. Proc Natl Acad Sci. 2010;107(3):1207–10.PubMedCrossRef
28.
go back to reference Neff P, Michels J, Meyer M, Schecklmann M, Langguth B, Schlee W. 10 Hz amplitude modulated sounds induce short-term tinnitus suppression. Front Aging Neurosci. 2017;9:130.PubMedPubMedCentralCrossRef Neff P, Michels J, Meyer M, Schecklmann M, Langguth B, Schlee W. 10 Hz amplitude modulated sounds induce short-term tinnitus suppression. Front Aging Neurosci. 2017;9:130.PubMedPubMedCentralCrossRef
29.
go back to reference Roberts LE, Moffat G, Baumann M, Ward LM, Bosnyak DJ. Residual inhibition functions overlap tinnitus spectra and the region of auditory threshold shift. J Assoc Res Otolaryngol. 2008;9(4):417–35.PubMedPubMedCentralCrossRef Roberts LE, Moffat G, Baumann M, Ward LM, Bosnyak DJ. Residual inhibition functions overlap tinnitus spectra and the region of auditory threshold shift. J Assoc Res Otolaryngol. 2008;9(4):417–35.PubMedPubMedCentralCrossRef
30.
go back to reference Shekhawat GS, Kobayashi K, Searchfield GD. Methodology for studying the transient effects of transcranial direct current stimulation combined with auditory residual inhibition on tinnitus. J Neurosci Methods. 2015;239:28–33.PubMedCrossRef Shekhawat GS, Kobayashi K, Searchfield GD. Methodology for studying the transient effects of transcranial direct current stimulation combined with auditory residual inhibition on tinnitus. J Neurosci Methods. 2015;239:28–33.PubMedCrossRef
31.
go back to reference Teismann H, Wollbrink A, Okamoto H, Schlaug G, Rudack C, Pantev C. Combining transcranial direct current stimulation and tailor-made notched music training to decrease tinnitus-related distress – a pilot study. PLOS ONE. 2014;9(2):e89904.PubMedPubMedCentralCrossRef Teismann H, Wollbrink A, Okamoto H, Schlaug G, Rudack C, Pantev C. Combining transcranial direct current stimulation and tailor-made notched music training to decrease tinnitus-related distress – a pilot study. PLOS ONE. 2014;9(2):e89904.PubMedPubMedCentralCrossRef
32.
go back to reference Henin S, Fein D, Smouha E, Parra LC. The effects of compensatory auditory stimulation and high-definition transcranial direct current stimulation (HD-tDCS) on tinnitus perception - a randomized pilot study. PLoS One. 2016;11(11):e0166208.PubMedPubMedCentralCrossRef Henin S, Fein D, Smouha E, Parra LC. The effects of compensatory auditory stimulation and high-definition transcranial direct current stimulation (HD-tDCS) on tinnitus perception - a randomized pilot study. PLoS One. 2016;11(11):e0166208.PubMedPubMedCentralCrossRef
33.
go back to reference Rabau S, Van Rompaey V, Van de Heyning P. The effect of transcranial direct current stimulation in addition to tinnitus retraining therapy for treatment of chronic tinnitus patients: a study protocol for a double-blind controlled randomised trial. Trials. 2015;16(1):514.PubMedPubMedCentralCrossRef Rabau S, Van Rompaey V, Van de Heyning P. The effect of transcranial direct current stimulation in addition to tinnitus retraining therapy for treatment of chronic tinnitus patients: a study protocol for a double-blind controlled randomised trial. Trials. 2015;16(1):514.PubMedPubMedCentralCrossRef
34.
go back to reference Lee HY, Choi MS, Chang DS, Cho C-S. Combined bifrontal transcranial direct current stimulation and tailor-made notched music training in chronic tinnitus. J Audiol Otol. 2017;21(1):22–7.PubMedPubMedCentralCrossRef Lee HY, Choi MS, Chang DS, Cho C-S. Combined bifrontal transcranial direct current stimulation and tailor-made notched music training in chronic tinnitus. J Audiol Otol. 2017;21(1):22–7.PubMedPubMedCentralCrossRef
35.
go back to reference Claes L, Stamberger H, Van de Heyning P, De Ridder D, Vanneste S. Auditory cortex tACS and tRNS for tinnitus: single versus multiple sessions. Neural Plasticity. 2014;2014:436713.PubMedPubMedCentralCrossRef Claes L, Stamberger H, Van de Heyning P, De Ridder D, Vanneste S. Auditory cortex tACS and tRNS for tinnitus: single versus multiple sessions. Neural Plasticity. 2014;2014:436713.PubMedPubMedCentralCrossRef
36.
37.
go back to reference Peter N, Kleinjung T. Neuromodulation for tinnitus treatment: an overview of invasive and non-invasive techniques. J Zhejiang Univ Sci B. 2019;20(2):116–30.PubMedPubMedCentralCrossRef Peter N, Kleinjung T. Neuromodulation for tinnitus treatment: an overview of invasive and non-invasive techniques. J Zhejiang Univ Sci B. 2019;20(2):116–30.PubMedPubMedCentralCrossRef
38.
go back to reference Hoare DJ, Adjamian P, Sereda M. Electrical stimulation of the ear, head, cranial nerve, or cortex for the treatment of tinnitus: a scoping review. Neural Plasticity. 2016;2016:5130503.PubMedPubMedCentralCrossRef Hoare DJ, Adjamian P, Sereda M. Electrical stimulation of the ear, head, cranial nerve, or cortex for the treatment of tinnitus: a scoping review. Neural Plasticity. 2016;2016:5130503.PubMedPubMedCentralCrossRef
39.
go back to reference Cima RFF, Mazurek B, Haider H, Kikidis D, Lapira A, Noreña A, et al. A multidisciplinary European guideline for tinnitus: diagnostics, assessment, and treatment. Hno. 2019;67(Suppl 1):10–42.PubMedCrossRef Cima RFF, Mazurek B, Haider H, Kikidis D, Lapira A, Noreña A, et al. A multidisciplinary European guideline for tinnitus: diagnostics, assessment, and treatment. Hno. 2019;67(Suppl 1):10–42.PubMedCrossRef
40.
go back to reference Attias J, Urbach D, Gold S, Shemesh Z. Auditory event related potentials in chronic tinnitus patients with noise induced hearing loss. Hear Res. 1993;71(1-2):106–13.PubMedCrossRef Attias J, Urbach D, Gold S, Shemesh Z. Auditory event related potentials in chronic tinnitus patients with noise induced hearing loss. Hear Res. 1993;71(1-2):106–13.PubMedCrossRef
41.
go back to reference De Ridder D, Schlee W, Vanneste S, Londero A, Weisz N, Kleinjung T, et al. Tinnitus and tinnitus disorder: theoretical and operational definitions (an international multidisciplinary proposal). Prog Brain Res. 2021;260:1–25.PubMedCrossRef De Ridder D, Schlee W, Vanneste S, Londero A, Weisz N, Kleinjung T, et al. Tinnitus and tinnitus disorder: theoretical and operational definitions (an international multidisciplinary proposal). Prog Brain Res. 2021;260:1–25.PubMedCrossRef
42.
go back to reference Brodmann K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Verlag von Johann Abrosius Barth; 1909. Brodmann K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Verlag von Johann Abrosius Barth; 1909.
43.
go back to reference Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund HJ, et al. Probabilistic mapping and volume measurement of human primary auditory cortex. NeuroImage. 2001;13(4):669–83.PubMedCrossRef Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund HJ, et al. Probabilistic mapping and volume measurement of human primary auditory cortex. NeuroImage. 2001;13(4):669–83.PubMedCrossRef
44.
go back to reference Oostenveld R, Praamstra P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol. 2001;112(4):713–9.PubMedCrossRef Oostenveld R, Praamstra P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol. 2001;112(4):713–9.PubMedCrossRef
45.
go back to reference Jurcak V, Tsuzuki D, Dan I. 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage. 2007;34(4):1600–11.PubMedCrossRef Jurcak V, Tsuzuki D, Dan I. 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage. 2007;34(4):1600–11.PubMedCrossRef
46.
go back to reference MATLAB. version 2019b. Natick, Massachusetts: The MathWorks Inc.; 2020. MATLAB. version 2019b. Natick, Massachusetts: The MathWorks Inc.; 2020.
47.
go back to reference Brainard DH. The Psychophysics Toolbox. Spat Vis. 1997;10:433–6. Brainard DH. The Psychophysics Toolbox. Spat Vis. 1997;10:433–6.
48.
go back to reference Pelli DG. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis. 1997;10:437–42. Pelli DG. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis. 1997;10:437–42.
49.
go back to reference Kleiner M, Brainard D, Pelli D. What's new in Psychtoolbox-3?. Perception. 2007;36:14–4. Kleiner M, Brainard D, Pelli D. What's new in Psychtoolbox-3?. Perception. 2007;36:14–4.
50.
go back to reference Hartmann T, Weisz N. An Introduction to the Objective Psychophysics Toolbox. Front Psychol. 2020;11:585437. Hartmann T, Weisz N. An Introduction to the Objective Psychophysics Toolbox. Front Psychol. 2020;11:585437.
51.
go back to reference Sedley W, Alter K, Gander PE, Berger J, Griffiths TD. Exposing pathological sensory predictions in tinnitus using auditory intensity deviant evoked responses. J Neurosci. 2019;39(50):10096–103.PubMedPubMedCentralCrossRef Sedley W, Alter K, Gander PE, Berger J, Griffiths TD. Exposing pathological sensory predictions in tinnitus using auditory intensity deviant evoked responses. J Neurosci. 2019;39(50):10096–103.PubMedPubMedCentralCrossRef
52.
go back to reference Mahmoudian S, Farhadi M, Najafi-Koopaie M, Darestani-Farahani E, Mohebbi M, Dengler R, et al. Central auditory processing during chronic tinnitus as indexed by topographical maps of the mismatch negativity obtained with the multi-feature paradigm. Brain Res. 2013;1527:161–73.PubMedCrossRef Mahmoudian S, Farhadi M, Najafi-Koopaie M, Darestani-Farahani E, Mohebbi M, Dengler R, et al. Central auditory processing during chronic tinnitus as indexed by topographical maps of the mismatch negativity obtained with the multi-feature paradigm. Brain Res. 2013;1527:161–73.PubMedCrossRef
53.
54.
go back to reference Näätänen R, Pakarinen S, Rinne T, Takegata R. The mismatch negativity (MMN): towards the optimal paradigm. Clin Neurophysiol. 2004;115(1):140–4.PubMedCrossRef Näätänen R, Pakarinen S, Rinne T, Takegata R. The mismatch negativity (MMN): towards the optimal paradigm. Clin Neurophysiol. 2004;115(1):140–4.PubMedCrossRef
55.
go back to reference Pakarinen S, Huotilainen M, Näätänen R. The mismatch negativity (MMN) with no standard stimulus. Clin Neurophysiol. 2010;121(7):1043–50.PubMedCrossRef Pakarinen S, Huotilainen M, Näätänen R. The mismatch negativity (MMN) with no standard stimulus. Clin Neurophysiol. 2010;121(7):1043–50.PubMedCrossRef
56.
go back to reference Green DM. A maximum-likelihood method for estimating thresholds in a yes-no task. J Acoust Soc Am. 1993;93(4 Pt 1):2096–105.PubMedCrossRef Green DM. A maximum-likelihood method for estimating thresholds in a yes-no task. J Acoust Soc Am. 1993;93(4 Pt 1):2096–105.PubMedCrossRef
57.
go back to reference Lecluyse W, Meddis R. A simple single-interval adaptive procedure for estimating thresholds in normal and impaired listeners. J Acoust Soc Am. 2009;126(5):2570–9.PubMedCrossRef Lecluyse W, Meddis R. A simple single-interval adaptive procedure for estimating thresholds in normal and impaired listeners. J Acoust Soc Am. 2009;126(5):2570–9.PubMedCrossRef
58.
go back to reference Tinnitus: assessment and management: in Evidence review for audiological assessment, NICE Evidence Reviews Collection. 2020. Tinnitus: assessment and management: in Evidence review for audiological assessment, NICE Evidence Reviews Collection. 2020.
59.
go back to reference Sherlock LP, Formby C. Estimates of loudness, loudness discomfort, and the auditory dynamic range: normative estimates, comparison of procedures, and test-retest reliability. J Am Acad Audiol. 2005;16(2):85–100.PubMedCrossRef Sherlock LP, Formby C. Estimates of loudness, loudness discomfort, and the auditory dynamic range: normative estimates, comparison of procedures, and test-retest reliability. J Am Acad Audiol. 2005;16(2):85–100.PubMedCrossRef
60.
go back to reference Pérez-González P, Johannesen PT, Lopez-Poveda EA. Forward-masking recovery and the assumptions of the temporal masking curve method of inferring cochlear compression. Trends Hear. 2014;18:2331216514564253. Pérez-González P, Johannesen PT, Lopez-Poveda EA. Forward-masking recovery and the assumptions of the temporal masking curve method of inferring cochlear compression. Trends Hear. 2014;18:2331216514564253.
62.
go back to reference Kiani F, Yoganantha U, Tan CM, Meddis R, Schaette R. Off-frequency listening in subjects with chronic tinnitus. Hear Res. 2013;306:1–10.PubMedCrossRef Kiani F, Yoganantha U, Tan CM, Meddis R, Schaette R. Off-frequency listening in subjects with chronic tinnitus. Hear Res. 2013;306:1–10.PubMedCrossRef
63.
go back to reference Lecluyse W, Tan CM, McFerran D, Meddis R. Acquisition of auditory profiles for good and impaired hearing. Int J Audiol. 2013;52(9):596–605.PubMedCrossRef Lecluyse W, Tan CM, McFerran D, Meddis R. Acquisition of auditory profiles for good and impaired hearing. Int J Audiol. 2013;52(9):596–605.PubMedCrossRef
64.
go back to reference Kegel A, Giroud N, Meyer M, Dillier N. Differences in Supra-Threshold Auditory Function in young and elderly normal hearing Adults. 20. Aalen: Jahrestagung der Deutschen Gesellschaft für Audiologie; 2017. Kegel A, Giroud N, Meyer M, Dillier N. Differences in Supra-Threshold Auditory Function in young and elderly normal hearing Adults. 20. Aalen: Jahrestagung der Deutschen Gesellschaft für Audiologie; 2017.
65.
go back to reference Henry JA. “Measurement” of tinnitus. Otol Neurotol. 2016;37(8). Henry JA. “Measurement” of tinnitus. Otol Neurotol. 2016;37(8).
66.
go back to reference Henry JA, Roberts LE, Ellingson RM, Thielman EJ. Computer-automated tinnitus assessment: noise-band matching, maskability, and residual inhibition. J Am Acad Audiol. 2013;24(6):486–504.PubMedCrossRef Henry JA, Roberts LE, Ellingson RM, Thielman EJ. Computer-automated tinnitus assessment: noise-band matching, maskability, and residual inhibition. J Am Acad Audiol. 2013;24(6):486–504.PubMedCrossRef
67.
go back to reference Neff P, Zielonka L, Meyer M, Langguth B, Schecklmann M, Schlee W. Comparison of amplitude modulated sounds and pure tones at the tinnitus frequency: residual tinnitus suppression and stimulus evaluation. Trends Hear. 2019;23:2331216519833841.PubMedPubMedCentral Neff P, Zielonka L, Meyer M, Langguth B, Schecklmann M, Schlee W. Comparison of amplitude modulated sounds and pure tones at the tinnitus frequency: residual tinnitus suppression and stimulus evaluation. Trends Hear. 2019;23:2331216519833841.PubMedPubMedCentral
68.
go back to reference Neff P, Langguth B, Schecklmann M, Hannemann R, Schlee W. Comparing three established methods for tinnitus pitch matching with respect to reliability, matching duration, and subjective satisfaction. Trends Hear. 2019;23:2331216519887247.PubMedPubMedCentral Neff P, Langguth B, Schecklmann M, Hannemann R, Schlee W. Comparing three established methods for tinnitus pitch matching with respect to reliability, matching duration, and subjective satisfaction. Trends Hear. 2019;23:2331216519887247.PubMedPubMedCentral
69.
go back to reference Neff PKA, Schoisswohl S, Simoes J, Staudinger S, Langguth B, Schecklmann M, et al. Prolonged tinnitus suppression after short-term acoustic stimulation. Prog Brain Res. 2021;262:159–74. Neff PKA, Schoisswohl S, Simoes J, Staudinger S, Langguth B, Schecklmann M, et al. Prolonged tinnitus suppression after short-term acoustic stimulation. Prog Brain Res. 2021;262:159–74.
70.
go back to reference Güntensperger D, Thüring C, Kleinjung T, Neff P, Meyer M. Investigating the efficacy of an individualized alpha/delta neurofeedback protocol in the treatment of chronic tinnitus. Neural Plasticity. 2019;2019:3540898.PubMedPubMedCentralCrossRef Güntensperger D, Thüring C, Kleinjung T, Neff P, Meyer M. Investigating the efficacy of an individualized alpha/delta neurofeedback protocol in the treatment of chronic tinnitus. Neural Plasticity. 2019;2019:3540898.PubMedPubMedCentralCrossRef
71.
go back to reference Güntensperger D, Kleinjung T, Neff P, Thüring C, Meyer M. Combining neurofeedback with source estimation: evaluation of an sLORETA neurofeedback protocol for chronic tinnitus treatment. Restor Neurol Neurosci. 2020;38(4):283–99.PubMedPubMedCentral Güntensperger D, Kleinjung T, Neff P, Thüring C, Meyer M. Combining neurofeedback with source estimation: evaluation of an sLORETA neurofeedback protocol for chronic tinnitus treatment. Restor Neurol Neurosci. 2020;38(4):283–99.PubMedPubMedCentral
72.
go back to reference Langguth B, Goodey R, Azevedo A, Bjorne A, Cacace A, Crocetti A, et al. Consensus for tinnitus patient assessment and treatment outcome measurement: Tinnitus Research Initiative meeting, Regensburg, July 2006. Prog Brain Res. 2007;166:525–36.PubMedPubMedCentralCrossRef Langguth B, Goodey R, Azevedo A, Bjorne A, Cacace A, Crocetti A, et al. Consensus for tinnitus patient assessment and treatment outcome measurement: Tinnitus Research Initiative meeting, Regensburg, July 2006. Prog Brain Res. 2007;166:525–36.PubMedPubMedCentralCrossRef
73.
go back to reference Margraf J, Ehlers A. BAI Beck-Angst-Inventar, deutsche Übersetzung. Harcourt Test Services (today Pearson). 2007. Margraf J, Ehlers A. BAI Beck-Angst-Inventar, deutsche Übersetzung. Harcourt Test Services (today Pearson). 2007.
74.
go back to reference Hautzinger M, Bailer M, Worall H, Keller F. Beck-Depressions-Inventar (BDI). Hans Huber, Bern. 1995. Hautzinger M, Bailer M, Worall H, Keller F. Beck-Depressions-Inventar (BDI). Hans Huber, Bern. 1995.
75.
go back to reference Angermeyer MC, Kilian R, Matschinger H. WHOQOL-100 und WHOQOL-BREF: Handbuch für die deutschsprachige Version der WHO-Instrumente zur Erfassung von Lebensqualität. Hogrefe, Göttingen. 2000. Angermeyer MC, Kilian R, Matschinger H. WHOQOL-100 und WHOQOL-BREF: Handbuch für die deutschsprachige Version der WHO-Instrumente zur Erfassung von Lebensqualität. Hogrefe, Göttingen. 2000.
76.
go back to reference Danner D, Rammstedt B, Bluemke M, Treiber L, Berres S, Soto C, John O. Die deutsche Version des Big Five Inventory 2 (BFI-2). Zusammenstellung sozialwissenschaftlicher Items und Skalen (ZIS). 2016. Danner D, Rammstedt B, Bluemke M, Treiber L, Berres S, Soto C, John O. Die deutsche Version des Big Five Inventory 2 (BFI-2). Zusammenstellung sozialwissenschaftlicher Items und Skalen (ZIS). 2016.
77.
go back to reference Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol. 1988;56:893–7. Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol. 1988;56:893–7. 
78.
go back to reference Peter N, Kleinjung T, Lippuner R, Boecking B, Brueggemann P, Mazurek B. [German-language versions of the Tinnitus Functional Index : Comparison of the two validated German-language versions of the Tinnitus Functional Index for Switzerland and Germany]. HNO. 2022;70,187-192. Peter N, Kleinjung T, Lippuner R, Boecking B, Brueggemann P, Mazurek B. [German-language versions of the Tinnitus Functional Index : Comparison of the two validated German-language versions of the Tinnitus Functional Index for Switzerland and Germany]. HNO. 2022;70,187-192.
79.
go back to reference Beck AT, Steer RA. Beck Depression Inventory Manual. San Antonio: Psychological Cooperation; 1993. Beck AT, Steer RA. Beck Depression Inventory Manual. San Antonio: Psychological Cooperation; 1993.
80.
go back to reference WHO. The World Health Organization quality of life assessment (WHOQOL): development and general psychometric properties. Group, T.W. (Ed.). Soc Sci Med. 1998;1569–85. WHO. The World Health Organization quality of life assessment (WHOQOL): development and general psychometric properties. Group, T.W. (Ed.). Soc Sci Med. 1998;1569–85.
81.
go back to reference John OP. The “Big Five” factor taxonomy: Dimensions of personality in the natural language and questionnaires. In L. A. Pervin (Ed.), Handbook of personality: Theory and research, NY: Guilford Press. 1990;66–100. John OP. The “Big Five” factor taxonomy: Dimensions of personality in the natural language and questionnaires. In L. A. Pervin (Ed.), Handbook of personality: Theory and research, NY: Guilford Press. 1990;66–100.
82.
go back to reference Zeman F, Koller M, Schecklmann M, Langguth B, Landgrebe M. Tinnitus assessment by means of standardized self-report questionnaires: psychometric properties of the Tinnitus Questionnaire (TQ), the Tinnitus Handicap Inventory (THI), and their short versions in an international and multi-lingual sample. Health Qual Life Outcomes. 2012;10:128.PubMedPubMedCentralCrossRef Zeman F, Koller M, Schecklmann M, Langguth B, Landgrebe M. Tinnitus assessment by means of standardized self-report questionnaires: psychometric properties of the Tinnitus Questionnaire (TQ), the Tinnitus Handicap Inventory (THI), and their short versions in an international and multi-lingual sample. Health Qual Life Outcomes. 2012;10:128.PubMedPubMedCentralCrossRef
83.
go back to reference Meikle MB, Henry JA, Griest SE, Stewart BJ, Abrams HB, McArdle R, et al. The tinnitus functional index: development of a new clinical measure for chronic, intrusive tinnitus. Ear Hear. 2012;33(2):153–76. Meikle MB, Henry JA, Griest SE, Stewart BJ, Abrams HB, McArdle R, et al. The tinnitus functional index: development of a new clinical measure for chronic, intrusive tinnitus. Ear Hear. 2012;33(2):153–76.
84.
go back to reference Newman CW, Sandridge SA, Jacobson GP. Psychometric adequacy of the Tinnitus Handicap Inventory (THI) for evaluating treatment outcome. J Am Acad Audiol. 1998;9(2):153–60.PubMed Newman CW, Sandridge SA, Jacobson GP. Psychometric adequacy of the Tinnitus Handicap Inventory (THI) for evaluating treatment outcome. J Am Acad Audiol. 1998;9(2):153–60.PubMed
85.
go back to reference Kleinjung T, Fischer B, Langguth B, Sand P, Hajak G, Dvořáková J, et al. Validierung einer deutschsprachigen Version des „Tinnitus Handicap Inventory”. Psychiatrische Praxis. 2007;34:140-2. Kleinjung T, Fischer B, Langguth B, Sand P, Hajak G, Dvořáková J, et al. Validierung einer deutschsprachigen Version des „Tinnitus Handicap Inventory”. Psychiatrische Praxis. 2007;34:140-2.
86.
go back to reference Nelting M, Finlayson NK. Geräuschüberempfindlichkeits-Fragebogen. Hogrefe, Göttingen. 2004. Nelting M, Finlayson NK. Geräuschüberempfindlichkeits-Fragebogen. Hogrefe, Göttingen. 2004.
87.
go back to reference McCombe A, Baguley D, Coles R, McKenna L, McKinney C, Windle-Taylor P. Guidelines for the grading of tinnitus severity: the results of a working group commissioned by the British Association of Otolaryngologists, Head and Neck Surgeons, 1999. Clin Otolaryngol Allied Sci. 2001;26(5):388–93.PubMedCrossRef McCombe A, Baguley D, Coles R, McKenna L, McKinney C, Windle-Taylor P. Guidelines for the grading of tinnitus severity: the results of a working group commissioned by the British Association of Otolaryngologists, Head and Neck Surgeons, 1999. Clin Otolaryngol Allied Sci. 2001;26(5):388–93.PubMedCrossRef
88.
go back to reference Oostenveld R, Fries P, Maris E, Schoffelen J-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput Intelligence Neurosci. 2010;2011:1–9.CrossRef Oostenveld R, Fries P, Maris E, Schoffelen J-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput Intelligence Neurosci. 2010;2011:1–9.CrossRef
89.
go back to reference Conlon B, Langguth B, Hamilton C, et al. Bimodal neuromodulation combining sound and tongue stimulation reduces tinnitus symptoms in a large randomized clinical study. Sci Transl Med. 2020;12(564):eabb2830.PubMedCrossRef Conlon B, Langguth B, Hamilton C, et al. Bimodal neuromodulation combining sound and tongue stimulation reduces tinnitus symptoms in a large randomized clinical study. Sci Transl Med. 2020;12(564):eabb2830.PubMedCrossRef
90.
go back to reference Zaehle T, Beretta M, Jäncke L, Herrmann CS, Sandmann P. Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence. Exp Brain Res. 2011;215(2):135–40.PubMedCrossRef Zaehle T, Beretta M, Jäncke L, Herrmann CS, Sandmann P. Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence. Exp Brain Res. 2011;215(2):135–40.PubMedCrossRef
91.
go back to reference Zeng F-G, Djalilian H, Lin H. Tinnitus treatment with precise and optimal electric stimulation: opportunities and challenges. Curr Opin Otolaryngol Head Neck Surg. 2015;23(5):382–7.PubMedPubMedCentralCrossRef Zeng F-G, Djalilian H, Lin H. Tinnitus treatment with precise and optimal electric stimulation: opportunities and challenges. Curr Opin Otolaryngol Head Neck Surg. 2015;23(5):382–7.PubMedPubMedCentralCrossRef
92.
go back to reference Shekhawat GS, Vanneste S. Optimization of transcranial direct current stimulation of dorsolateral prefrontal cortex for tinnitus: a non-linear dose-response effect. Sci Rep. 2018;8(1):8311.PubMedPubMedCentralCrossRef Shekhawat GS, Vanneste S. Optimization of transcranial direct current stimulation of dorsolateral prefrontal cortex for tinnitus: a non-linear dose-response effect. Sci Rep. 2018;8(1):8311.PubMedPubMedCentralCrossRef
93.
go back to reference Fuller T, Cima R, Langguth B, Mazurek B, Vlaeyen JW, Hoare DJ. Cognitive behavioural therapy for tinnitus. Cochrane Database Syst Rev. 2020;1:CD012614.PubMed Fuller T, Cima R, Langguth B, Mazurek B, Vlaeyen JW, Hoare DJ. Cognitive behavioural therapy for tinnitus. Cochrane Database Syst Rev. 2020;1:CD012614.PubMed
94.
go back to reference Simoes J, Neff P, Schoisswohl S, et al. Toward personalized tinnitus treatment: an exploratory study based on internet crowdsensing. Front Public Health. 2019;7:157.PubMedPubMedCentralCrossRef Simoes J, Neff P, Schoisswohl S, et al. Toward personalized tinnitus treatment: an exploratory study based on internet crowdsensing. Front Public Health. 2019;7:157.PubMedPubMedCentralCrossRef
95.
go back to reference Tzounopoulos T, Balaban C, Zitelli L, Palmer C. Towards a mechanistic-driven precision medicine approach for tinnitus. J Assoc Res Otolaryngol. 2019;20(2):115–31.PubMedPubMedCentralCrossRef Tzounopoulos T, Balaban C, Zitelli L, Palmer C. Towards a mechanistic-driven precision medicine approach for tinnitus. J Assoc Res Otolaryngol. 2019;20(2):115–31.PubMedPubMedCentralCrossRef
Metadata
Title
Transcranial electric and acoustic stimulation for tinnitus: study protocol for a randomized double-blind controlled trial assessing the influence of combined transcranial random noise and acoustic stimulation on tinnitus loudness and distress
Authors
Mariana Lopes Martins
Tobias Kleinjung
Martin Meyer
Vithushika Raveenthiran
Zino Wellauer
Nicole Peter
Patrick Neff
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Tinnitus
Published in
Trials / Issue 1/2022
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-022-06253-5

Other articles of this Issue 1/2022

Trials 1/2022 Go to the issue