Skip to main content
Top
Published in: Intensive Care Medicine 12/2007

01-12-2007 | Editorial

Time out for vasopressors in increased microvascular permeability?

Authors: Pierre Asfar, Peter Radermacher, Gernot Marx

Published in: Intensive Care Medicine | Issue 12/2007

Login to get access

Excerpt

Hypovolemia, resulting from blood or water loss, vasoplegia, or a capillary leak, is one of the most common reasons for shock states in the critically ill. Consequently, fluid replacement therapy is one of the cornerstones of the treatment in patients with trauma and/or septic shock. In addition, due to decreased peripheral vascular resistances in combination with altered microvascular blood flow, most frequently the ICU physician is also obliged to use vasoactive drugs in order to control hemodynamics and tissue perfusion. In this context, the question of the adequate perfusion pressure may assume crucial importance. In fact, according to the “two pores” theory for transcapillary fluid exchange, the rate of fluid escape from the vascular into the interstitial space depends on both the hydrostatic capillary pressure and the microvascular permeability [1]. …
Literature
1.
go back to reference Rippe B, Haraldson B (1994) Transport of macromolecules across microvascular walls: the two-pore theory. Physiol Rev 74:163–219PubMed Rippe B, Haraldson B (1994) Transport of macromolecules across microvascular walls: the two-pore theory. Physiol Rev 74:163–219PubMed
2.
go back to reference Dubniks M, Persson J, Grände PO (2007) Effect of blood pressure on plasma volume loss in the rat under increased permeability. Intensive Care Med DOI 10.1007/s00134-007-0756-2 Dubniks M, Persson J, Grände PO (2007) Effect of blood pressure on plasma volume loss in the rat under increased permeability. Intensive Care Med DOI 10.​1007/​s00134-007-0756-2
3.
go back to reference Persson J, Grände PO (2006) Plasma volume expansion and transcapillary fluid exchange in skeletal muscle of albumin, dextran, gelatine, hydroxyethyl starch, and saline after trauma in the cat. Crit Care Med 34:2456–2462PubMedCrossRef Persson J, Grände PO (2006) Plasma volume expansion and transcapillary fluid exchange in skeletal muscle of albumin, dextran, gelatine, hydroxyethyl starch, and saline after trauma in the cat. Crit Care Med 34:2456–2462PubMedCrossRef
4.
go back to reference Dubniks M, Persson J, Grände PO (2007) Plasma volume expansion of 5% albumin, 4% gelatine, 6% HES 130/0.4n and normal saline under increased microvascular permeability in the rat. Intensive Care Med 33:293–299PubMedCrossRef Dubniks M, Persson J, Grände PO (2007) Plasma volume expansion of 5% albumin, 4% gelatine, 6% HES 130/0.4n and normal saline under increased microvascular permeability in the rat. Intensive Care Med 33:293–299PubMedCrossRef
5.
go back to reference Persson J, Grände PO (2005) Volume expansion of albumin, gelatin, hydroxyethyl starch, saline and erythrocytes after haemorrhage in the rat. Intensive Care Med 31:296–301PubMedCrossRef Persson J, Grände PO (2005) Volume expansion of albumin, gelatin, hydroxyethyl starch, saline and erythrocytes after haemorrhage in the rat. Intensive Care Med 31:296–301PubMedCrossRef
6.
go back to reference Marx G, Cobas Meyer M, Schuerholz T, Vangerow B, Gratz KF, Hecker H, Sümpelmann R, Rueckoldt H, Leuwer M (2002) Hydroxyethyl starch and modified gelatine maintain plasma volume in a porcine model of septic shock with capillary leakage. Intensive Care Med 28:629–635PubMedCrossRef Marx G, Cobas Meyer M, Schuerholz T, Vangerow B, Gratz KF, Hecker H, Sümpelmann R, Rueckoldt H, Leuwer M (2002) Hydroxyethyl starch and modified gelatine maintain plasma volume in a porcine model of septic shock with capillary leakage. Intensive Care Med 28:629–635PubMedCrossRef
7.
go back to reference Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedCrossRef Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedCrossRef
8.
go back to reference Antonelli M, Levy M, Andrews PJD, Chastre J, Hudson LD, Manthous C, Meduri GU, Moreno RP, Putensen C, Stewart T, Torres A (2007) Hemodynamic monitoring in shock and implication for management. International Consensus Conference, Paris, France, 27–28 April 2006. Intensive Care Med 33:575–590PubMedCrossRef Antonelli M, Levy M, Andrews PJD, Chastre J, Hudson LD, Manthous C, Meduri GU, Moreno RP, Putensen C, Stewart T, Torres A (2007) Hemodynamic monitoring in shock and implication for management. International Consensus Conference, Paris, France, 27–28 April 2006. Intensive Care Med 33:575–590PubMedCrossRef
9.
go back to reference LeDoux D, Astiz ME, Carpati CM, Rackow EC (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28:2729–2732PubMedCrossRef LeDoux D, Astiz ME, Carpati CM, Rackow EC (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28:2729–2732PubMedCrossRef
10.
go back to reference Bourgoin A, Leone M, Delmas A, Garnier F, Albanese J, Martin C (2005) Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med 33:780–786PubMedCrossRef Bourgoin A, Leone M, Delmas A, Garnier F, Albanese J, Martin C (2005) Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med 33:780–786PubMedCrossRef
11.
go back to reference Simmons RS, Berdine GG, Seidenfeld JJ, Prihoda TJ, Harris GD, Smith JD, Gilbert TJ, Mota E, Johanson WG Jr (1987) Fluid balance and the adult respiratory distress syndrome. Am Rev Respir Dis 135:924–929PubMed Simmons RS, Berdine GG, Seidenfeld JJ, Prihoda TJ, Harris GD, Smith JD, Gilbert TJ, Mota E, Johanson WG Jr (1987) Fluid balance and the adult respiratory distress syndrome. Am Rev Respir Dis 135:924–929PubMed
12.
go back to reference Schuller D, Mitchell JP, Calandrino FS, Schuster DP (1991) Fluid balance during pulmonary edema. Is fluid gain a marker or a cause of poor outcome? Chest 100:1068–1075PubMedCrossRef Schuller D, Mitchell JP, Calandrino FS, Schuster DP (1991) Fluid balance during pulmonary edema. Is fluid gain a marker or a cause of poor outcome? Chest 100:1068–1075PubMedCrossRef
13.
go back to reference Mitchell JP, Schuller D, Calandrino FS, Schuster DP (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis 145:990–998PubMed Mitchell JP, Schuller D, Calandrino FS, Schuster DP (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis 145:990–998PubMed
14.
go back to reference Asfar P, Pierrot M, Veal N, Moal F, Oberti F, Croquet V, Douay O, Gallois Y, Saumet JL, Alquier P, Calès P (2003) Low-dose terlipressin improves systemic and splanchnic hemodynamics in fluid-challenged endotoxic rats. Crit Care Med 31:215–220PubMedCrossRef Asfar P, Pierrot M, Veal N, Moal F, Oberti F, Croquet V, Douay O, Gallois Y, Saumet JL, Alquier P, Calès P (2003) Low-dose terlipressin improves systemic and splanchnic hemodynamics in fluid-challenged endotoxic rats. Crit Care Med 31:215–220PubMedCrossRef
Metadata
Title
Time out for vasopressors in increased microvascular permeability?
Authors
Pierre Asfar
Peter Radermacher
Gernot Marx
Publication date
01-12-2007
Publisher
Springer-Verlag
Published in
Intensive Care Medicine / Issue 12/2007
Print ISSN: 0342-4642
Electronic ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-007-0757-1

Other articles of this Issue 12/2007

Intensive Care Medicine 12/2007 Go to the issue