Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2020

01-12-2020 | Tibial Head Fracture | Research article

Influence of reduction accuracy in lateral tibial plateau fractures on intra-articular friction – a biomechanical study

Authors: Christian Walter, Alexander Beck, Christopher Jacob, Ulf Krister Hofmann, Ulrich Stöckle, Fabian Stuby

Published in: BMC Musculoskeletal Disorders | Issue 1/2020

Login to get access

Abstract

Background

Lateral tibial split fractures (LTSF) usually require surgical therapy with screw or plate osteosynthesis. Excellent anatomical reduction of the fracture is thereby essential to avoid post-traumatic osteoarthritis. In clinical practice, a gap and step of 2 mm have been propagated as maximum tolerable limit. To date, biomechanical studies regarding tibial fractures have been limited to pressure measurement, but the relationship between dissipated energy (DE) as a friction parameter and reduction accuracy in LTSF has not been investigated. In past experiments, we developed a new method to measure DE in ovine knee joints. To determine weather non-anatomical fracture reduction with lateral gap or vertical step condition leads to relevant changes in DE in the human knee joint, we tested the applicability of the new method on human LTSFs and investigated whether the current limit of 2 mm gap and step is durable from a biomechanical point of view.

Methods

Seven right human, native knee joint specimens were cyclically moved under 400 N axial load using a robotic system. During the cyclic motion, the flexion angle and the respective torque were recorded and the DE was calculated. First, DE was measured after an anterolateral approach had been performed (condition “native”). Then a LTSF was set with a chisel, reduced anatomically, fixed with two set screws and DE was measured (“even”). DE of further reductions was then measured with gaps of 1 mm and 2 mm, and a 2 mm step down or a 2 mm step up was measured.

Results

We successfully established a measurement protocol for DE in human knee joints with LTSF. While gaps led to small though statistically significant increase (1 mm gap:ΔDE compared with native = 0.030 J/cycle, (+ 21%), p = 0.02; 2 mm gap:ΔDE = 0.032 J/cycle, (+ 22%), p = 0.009), this increase almost doubled when reducing in a step-down condition (ΔDE = 0.058 J/cycle, (+ 56%), p = 0.042) and even tripled in the step-up condition (ΔDE = 0.097 J/cycle, (+ 94%), p = 0.004).

Conclusions

Based on our biomechanical findings, we suggest avoiding step conditions in the daily work in the operating theatre. Gap conditions can be handled a bit more generously.
Literature
1.
go back to reference Weimann A, Heinkele T, Herbort M, Schliemann B, Petersen W, Raschke MJ. Minimally invasive reconstruction of lateral tibial plateau fractures using the jail technique: a biomechanical study. BMC Musculoskelet Disord. 2013;14:120.CrossRef Weimann A, Heinkele T, Herbort M, Schliemann B, Petersen W, Raschke MJ. Minimally invasive reconstruction of lateral tibial plateau fractures using the jail technique: a biomechanical study. BMC Musculoskelet Disord. 2013;14:120.CrossRef
2.
go back to reference Lobenhoffer P, Schulze M, Gerich T, Lattermann C, Tscherne H. Closed reduction/percutaneous fixation of tibial plateau fractures: arthroscopic versus fluoroscopic control of reduction. J Orthop Trauma. 1999;13(6):426–31.CrossRef Lobenhoffer P, Schulze M, Gerich T, Lattermann C, Tscherne H. Closed reduction/percutaneous fixation of tibial plateau fractures: arthroscopic versus fluoroscopic control of reduction. J Orthop Trauma. 1999;13(6):426–31.CrossRef
3.
go back to reference Papagelopoulos PJ, Partsinevelos AA, Themistocleous GS, Mavrogenis AF, Korres DS, Soucacos PN. Complications after tibia plateau fracture surgery. Injury. 2006;37(6):475–84.CrossRef Papagelopoulos PJ, Partsinevelos AA, Themistocleous GS, Mavrogenis AF, Korres DS, Soucacos PN. Complications after tibia plateau fracture surgery. Injury. 2006;37(6):475–84.CrossRef
4.
go back to reference Blokker CP, Rorabeck CH, Bourne RB. Tibial plateau fractures. An analysis of the results of treatment in 60 patients. Clin Orthop Relat Res. 1984;182:193–9. Blokker CP, Rorabeck CH, Bourne RB. Tibial plateau fractures. An analysis of the results of treatment in 60 patients. Clin Orthop Relat Res. 1984;182:193–9.
5.
go back to reference Waddell JP, Johnston DW, Neidre A. Fractures of the tibial plateau: a review of ninety-five patients and comparison of treatment methods. J Trauma. 1981;21(5):376–81.CrossRef Waddell JP, Johnston DW, Neidre A. Fractures of the tibial plateau: a review of ninety-five patients and comparison of treatment methods. J Trauma. 1981;21(5):376–81.CrossRef
6.
go back to reference Solomon LB, Stevenson AW, Lee YC, Baird RP, Howie DW. Posterolateral and anterolateral approaches to unicondylar posterolateral tibial plateau fractures: a comparative study. Injury. 2013;44(11):1561–8.CrossRef Solomon LB, Stevenson AW, Lee YC, Baird RP, Howie DW. Posterolateral and anterolateral approaches to unicondylar posterolateral tibial plateau fractures: a comparative study. Injury. 2013;44(11):1561–8.CrossRef
7.
go back to reference Prasad M, Yadav S, Sud A, Arora NC, Kumar N, Singh S. Assessment of the role of fibular fixation in distal-third tibia-fibula fractures and its significance in decreasing malrotation and malalignment. Injury. 2013;44(12):1885–91.CrossRef Prasad M, Yadav S, Sud A, Arora NC, Kumar N, Singh S. Assessment of the role of fibular fixation in distal-third tibia-fibula fractures and its significance in decreasing malrotation and malalignment. Injury. 2013;44(12):1885–91.CrossRef
8.
go back to reference Giannoudis PV, Tzioupis C, Papathanassopoulos A, Obakponovwe O, Roberts C. Articular step-off and risk of post-traumatic osteoarthritis. Evidence Today Injury. 2010;41(10):986–95.CrossRef Giannoudis PV, Tzioupis C, Papathanassopoulos A, Obakponovwe O, Roberts C. Articular step-off and risk of post-traumatic osteoarthritis. Evidence Today Injury. 2010;41(10):986–95.CrossRef
9.
go back to reference Goetz JE, Fredericks D, Petersen E, Rudert MJ, Baer T, Swanson E, et al. A clinically realistic large animal model of intra-articular fracture that progresses to post-traumatic osteoarthritis. Osteoarthr Cartil. 2015;23(10):1797–805.CrossRef Goetz JE, Fredericks D, Petersen E, Rudert MJ, Baer T, Swanson E, et al. A clinically realistic large animal model of intra-articular fracture that progresses to post-traumatic osteoarthritis. Osteoarthr Cartil. 2015;23(10):1797–805.CrossRef
10.
go back to reference Bai B, Kummer FJ, Sala DA, Koval KJ, Wolinsky PR. Effect of articular step-off and meniscectomy on joint alignment and contact pressures for fractures of the lateral tibial plateau. J Orthop Trauma. 2001;15(2):101–6.CrossRef Bai B, Kummer FJ, Sala DA, Koval KJ, Wolinsky PR. Effect of articular step-off and meniscectomy on joint alignment and contact pressures for fractures of the lateral tibial plateau. J Orthop Trauma. 2001;15(2):101–6.CrossRef
11.
go back to reference Isaac DI, Meyer EG, Haut RC. Chondrocyte damage and contact pressures following impact on the rabbit tibiofemoral joint. J Biomech Eng. 2008;130(4):041018.CrossRef Isaac DI, Meyer EG, Haut RC. Chondrocyte damage and contact pressures following impact on the rabbit tibiofemoral joint. J Biomech Eng. 2008;130(4):041018.CrossRef
12.
go back to reference Walter C, Leichtle U, Lorenz A, Mittag F, Wulker N, Muller O, et al. Dissipated energy as a method to characterize the cartilage damage in large animal joints: an in vitro testing model. Med Eng Phys. 2013;35(9):1251–5.CrossRef Walter C, Leichtle U, Lorenz A, Mittag F, Wulker N, Muller O, et al. Dissipated energy as a method to characterize the cartilage damage in large animal joints: an in vitro testing model. Med Eng Phys. 2013;35(9):1251–5.CrossRef
13.
go back to reference Lorenz A, Rothstock S, Bobrowitsch E, Beck A, Gruhler G, Ipach I, et al. Cartilage surface characterization by frictional dissipated energy during axially loaded knee flexion--an in vitro sheep model. J Biomech. 2013;46(8):1427–32.CrossRef Lorenz A, Rothstock S, Bobrowitsch E, Beck A, Gruhler G, Ipach I, et al. Cartilage surface characterization by frictional dissipated energy during axially loaded knee flexion--an in vitro sheep model. J Biomech. 2013;46(8):1427–32.CrossRef
14.
go back to reference Bobrowitsch E, Lorenz A, Wulker N, Walter C. Simulation of in vivo dynamics during robot assisted joint movement. Biomed Eng Online. 2014;13:167.CrossRef Bobrowitsch E, Lorenz A, Wulker N, Walter C. Simulation of in vivo dynamics during robot assisted joint movement. Biomed Eng Online. 2014;13:167.CrossRef
15.
go back to reference Thomas C, Athanasiov A, Wullschleger M, Schuetz M. Current concepts in tibial plateau fractures. Acta Chir Orthop Traumatol Cechoslov. 2009;76(5):363–73. Thomas C, Athanasiov A, Wullschleger M, Schuetz M. Current concepts in tibial plateau fractures. Acta Chir Orthop Traumatol Cechoslov. 2009;76(5):363–73.
16.
go back to reference Wilson DR, Feikes JD, Zavatsky AB, O'Connor JJ. The components of passive knee movement are coupled to flexion angle. J Biomech. 2000;33(4):465–73.CrossRef Wilson DR, Feikes JD, Zavatsky AB, O'Connor JJ. The components of passive knee movement are coupled to flexion angle. J Biomech. 2000;33(4):465–73.CrossRef
17.
go back to reference Wilson DR, Feikes JD, O'Connor JJ. Ligaments and articular contact guide passive knee flexion. J Biomech. 1998;31(12):1127–36.CrossRef Wilson DR, Feikes JD, O'Connor JJ. Ligaments and articular contact guide passive knee flexion. J Biomech. 1998;31(12):1127–36.CrossRef
18.
go back to reference Schatzker J, McBroom R, Bruce D. The tibial plateau fracture. The Toronto experience 1968--1975. Clin Orthop Relat Res 1979(138):94–104. Schatzker J, McBroom R, Bruce D. The tibial plateau fracture. The Toronto experience 1968--1975. Clin Orthop Relat Res 1979(138):94–104.
19.
go back to reference Tscherne H, Lobenhoffer P. Tibial plateau fractures. Management and expected results. Clin Orthop Relat Res. 1993;292:87–100.CrossRef Tscherne H, Lobenhoffer P. Tibial plateau fractures. Management and expected results. Clin Orthop Relat Res. 1993;292:87–100.CrossRef
20.
go back to reference van den Bogert AJ, Reinschmidt C, Lundberg A. Helical axes of skeletal knee joint motion during running. J Biomech. 2008;41(8):1632–8.CrossRef van den Bogert AJ, Reinschmidt C, Lundberg A. Helical axes of skeletal knee joint motion during running. J Biomech. 2008;41(8):1632–8.CrossRef
21.
go back to reference Corke P. Robotics toolbox for MATLAB, release 9 [software]; 2011. Corke P. Robotics toolbox for MATLAB, release 9 [software]; 2011.
22.
go back to reference Tamer TM. Hyaluronan and synovial joint: function, distribution and healing. Interdiscip Toxicol. 2013;6(3):111–25.CrossRef Tamer TM. Hyaluronan and synovial joint: function, distribution and healing. Interdiscip Toxicol. 2013;6(3):111–25.CrossRef
23.
go back to reference Teeple E, Elsaid KA, Fleming BC, Jay GD, Aslani K, Crisco JJ, et al. Coefficients of friction, lubricin, and cartilage damage in the anterior cruciate ligament-deficient Guinea pig knee. J Orthop Res. 2008;26(2):231–7.CrossRef Teeple E, Elsaid KA, Fleming BC, Jay GD, Aslani K, Crisco JJ, et al. Coefficients of friction, lubricin, and cartilage damage in the anterior cruciate ligament-deficient Guinea pig knee. J Orthop Res. 2008;26(2):231–7.CrossRef
24.
go back to reference Hui AY, McCarty WJ, Masuda K, Firestein GS, Sah RL. A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley Interdiscip Rev Syst Biol Med. 2012;4(1):15–37.CrossRef Hui AY, McCarty WJ, Masuda K, Firestein GS, Sah RL. A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley Interdiscip Rev Syst Biol Med. 2012;4(1):15–37.CrossRef
25.
go back to reference Hogel F, Hoffmann S, Panzer S, Wimber J, Buhren V, Augat P. Biomechanical comparison of intramedullar versus extramedullar stabilization of intra-articular tibial plateau fractures. Arch Orthop Trauma Surg. 2013;133(1):59–64.CrossRef Hogel F, Hoffmann S, Panzer S, Wimber J, Buhren V, Augat P. Biomechanical comparison of intramedullar versus extramedullar stabilization of intra-articular tibial plateau fractures. Arch Orthop Trauma Surg. 2013;133(1):59–64.CrossRef
26.
go back to reference Zhang W, Luo CF, Putnis S, Sun H, Zeng ZM, Zeng BF. Biomechanical analysis of four different fixations for the posterolateral shearing tibial plateau fracture. Knee. 2012;19(2):94–8.CrossRef Zhang W, Luo CF, Putnis S, Sun H, Zeng ZM, Zeng BF. Biomechanical analysis of four different fixations for the posterolateral shearing tibial plateau fracture. Knee. 2012;19(2):94–8.CrossRef
27.
go back to reference Fukubayashi T, Kurosawa H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop Scand. 1980;51(6):871–9.CrossRef Fukubayashi T, Kurosawa H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop Scand. 1980;51(6):871–9.CrossRef
28.
go back to reference Trumble T, Verheyden J. Remodeling of articular defects in an animal model. Clin Orthop Relat Res. 2004;423:59–63.CrossRef Trumble T, Verheyden J. Remodeling of articular defects in an animal model. Clin Orthop Relat Res. 2004;423:59–63.CrossRef
29.
go back to reference Jay GD, Torres JR, Rhee DK, Helminen HJ, Hytinnen MM, Cha CJ, et al. Association between friction and wear in diarthrodial joints lacking lubricin. Arthritis Rheum. 2007;56(11):3662–9.CrossRef Jay GD, Torres JR, Rhee DK, Helminen HJ, Hytinnen MM, Cha CJ, et al. Association between friction and wear in diarthrodial joints lacking lubricin. Arthritis Rheum. 2007;56(11):3662–9.CrossRef
30.
go back to reference McCann L, Ingham E, Jin Z, Fisher J. Influence of the meniscus on friction and degradation of cartilage in the natural knee joint. Osteoarthr Cartil. 2009;17(8):995–1000.CrossRef McCann L, Ingham E, Jin Z, Fisher J. Influence of the meniscus on friction and degradation of cartilage in the natural knee joint. Osteoarthr Cartil. 2009;17(8):995–1000.CrossRef
31.
go back to reference Walker PS, Erkman MJ. The role of the menisci in force transmission across the knee. Clin Orthop Relat Res. 1975;109:184–92.CrossRef Walker PS, Erkman MJ. The role of the menisci in force transmission across the knee. Clin Orthop Relat Res. 1975;109:184–92.CrossRef
32.
go back to reference Stevens DG, Beharry R, McKee MD, Waddell JP, Schemitsch EH. The long-term functional outcome of operatively treated tibial plateau fractures. J Orthop Trauma. 2001;15(5):312–20.CrossRef Stevens DG, Beharry R, McKee MD, Waddell JP, Schemitsch EH. The long-term functional outcome of operatively treated tibial plateau fractures. J Orthop Trauma. 2001;15(5):312–20.CrossRef
33.
go back to reference Mitchell N, Shepard N. Healing of articular cartilage in intra-articular fractures in rabbits. Clin Orthop Relat Res. 1980;2004(423):3–6. Mitchell N, Shepard N. Healing of articular cartilage in intra-articular fractures in rabbits. Clin Orthop Relat Res. 1980;2004(423):3–6.
Metadata
Title
Influence of reduction accuracy in lateral tibial plateau fractures on intra-articular friction – a biomechanical study
Authors
Christian Walter
Alexander Beck
Christopher Jacob
Ulf Krister Hofmann
Ulrich Stöckle
Fabian Stuby
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2020
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-019-3020-3

Other articles of this Issue 1/2020

BMC Musculoskeletal Disorders 1/2020 Go to the issue