Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2021

Open Access 01-12-2021 | Thyroid Cancer | Research

ZIP10 is a negative determinant for anti-tumor effect of mannose in thyroid cancer by activating phosphate mannose isomerase

Authors: Sharui Ma, Na Wang, Rui Liu, Rui Zhang, Hui Dang, Yubo Wang, Simeng Wang, Zekun Zeng, Meiju Ji, Peng Hou

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2021

Login to get access

Abstract

Background

Mannose, a natural hexose existing in daily food, has been demonstrated to preferentially inhibit the progression of tumors with low expression of phosphate mannose isomerase (PMI). However, its function in thyroid cancer still remains elusive.

Methods

MTT, colony formation and flow cytometry assays were performed to determine the response of thyroid cancer cells to mannose. Meanwhile, mouse models of subcutaneous xenograft and primary papillary thyroid cancer were established to determine in vivo anti-tumor activity of mannose. The underlying mechanism of mannose selectively killing thyroid cancer cells was clarified by a series of molecular and biochemical experiments.

Results

Our data demonstrated that mannose selectively suppressed the growth of thyroid cancer cells, and found that enzyme activity of PMI rather than its protein expression was negatively associated with the response of thyroid cancer cells to mannose. Besides, our data showed that zinc ion (Zn2+) chelator TPEN clearly increased the response of mannose-insensitive cells to mannose by inhibiting enzyme activity of PMI, while Zn2+ supplement could effectively reverse this effect. Further studies found that the expression of zinc transport protein ZIP10, which transport Zn2+ from extracellular area into cells, was negatively related to the response of thyroid cancer cells to mannose. Knocking down ZIP10 in mannose-insensitive cells significantly inhibited in vitro and in vivo growth of these cells by decreasing intracellular Zn2+ concentration and enzyme activity of PMI. Moreover, ectopic expression of ZIP10 in mannose-sensitive cells decrease their cellular response to mannose. Mechanistically, mannose exerted its anti-tumor effect by inhibiting cellular glycolysis; however, this effect was highly dependent on expression status of ZIP10.

Conclusion

The present study demonstrate that mannose selectively kills thyroid cancer cells dependent on enzyme activity of PMI rather than its expression, and provide a mechanistic rationale for exploring clinical use of mannose in thyroid cancer therapy.
Appendix
Available only for authorised users
Literature
1.
3.
go back to reference Zhang S, Sun K, Zheng R, Zeng H, Wang S, Chen R, et al. Cancer incidence and mortality in China, 2015. J Nat Cancer Cent. 2021;1(1):2–11.CrossRef Zhang S, Sun K, Zheng R, Zeng H, Wang S, Chen R, et al. Cancer incidence and mortality in China, 2015. J Nat Cancer Cent. 2021;1(1):2–11.CrossRef
4.
go back to reference Yang Q, Ji M, Guan H, Shi B, Hou P. Shikonin inhibits thyroid cancer cell growth and invasiveness through targeting major signaling pathways. J Clin Endocrinol Metab. 2013;98(12):E1909–17.PubMedCrossRef Yang Q, Ji M, Guan H, Shi B, Hou P. Shikonin inhibits thyroid cancer cell growth and invasiveness through targeting major signaling pathways. J Clin Endocrinol Metab. 2013;98(12):E1909–17.PubMedCrossRef
6.
go back to reference Bible KC, Kebebew E, Brierley J, Brito JP, Cabanillas ME, Clark TJ, et al. 2021 American Thyroid Association guidelines for Management of Patients with anaplastic thyroid cancer American Thyroid Association anaplastic thyroid cancer guidelines task force. Thyroid. 2021;31(3):337–86.PubMedPubMedCentralCrossRef Bible KC, Kebebew E, Brierley J, Brito JP, Cabanillas ME, Clark TJ, et al. 2021 American Thyroid Association guidelines for Management of Patients with anaplastic thyroid cancer American Thyroid Association anaplastic thyroid cancer guidelines task force. Thyroid. 2021;31(3):337–86.PubMedPubMedCentralCrossRef
8.
go back to reference Alton G, Hasilik M, Niehues R, Panneerselvam K, Etchison JR, Fana F, et al. Direct utilization of mannose for mammalian glycoprotein biosynthesis. Glycobiology. 1998;8(3):285–95.PubMedCrossRef Alton G, Hasilik M, Niehues R, Panneerselvam K, Etchison JR, Fana F, et al. Direct utilization of mannose for mammalian glycoprotein biosynthesis. Glycobiology. 1998;8(3):285–95.PubMedCrossRef
10.
go back to reference Altarac S, Papeš D. Use of d-mannose in prophylaxis of recurrent urinary tract infections (UTIs) in women. BJU Int. 2014;113(1):9–10.PubMedCrossRef Altarac S, Papeš D. Use of d-mannose in prophylaxis of recurrent urinary tract infections (UTIs) in women. BJU Int. 2014;113(1):9–10.PubMedCrossRef
11.
go back to reference Kranjcec B, Papes D, Altarac S. D-mannose powder for prophylaxis of recurrent urinary tract infections in women: a randomized clinical trial. World J Urol. 2014;32(1):79–84.PubMedCrossRef Kranjcec B, Papes D, Altarac S. D-mannose powder for prophylaxis of recurrent urinary tract infections in women: a randomized clinical trial. World J Urol. 2014;32(1):79–84.PubMedCrossRef
13.
go back to reference Zhang D, Chia C, Jiao X, Jin W, Kasagi S, Wu R, et al. D-mannose induces regulatory T cells and suppresses immunopathology. Nat Med. 2017;23(9):1036–45.PubMedCrossRef Zhang D, Chia C, Jiao X, Jin W, Kasagi S, Wu R, et al. D-mannose induces regulatory T cells and suppresses immunopathology. Nat Med. 2017;23(9):1036–45.PubMedCrossRef
14.
go back to reference Sharma V, Smolin J, Nayak J, Ayala JE, Scott DA, Peterson SN, et al. Mannose alters gut microbiome, prevents diet-induced obesity, and improves host metabolism. Cell Rep. 2018;24(12):3087–98.PubMedPubMedCentralCrossRef Sharma V, Smolin J, Nayak J, Ayala JE, Scott DA, Peterson SN, et al. Mannose alters gut microbiome, prevents diet-induced obesity, and improves host metabolism. Cell Rep. 2018;24(12):3087–98.PubMedPubMedCentralCrossRef
15.
go back to reference Gu J, Liang D, Pierzynski JA, Zheng L, Ye Y, Zhang J, et al. D-mannose: a novel prognostic biomarker for patients with esophageal adenocarcinoma. Carcinogenesis. 2017;38(2):162–7.PubMed Gu J, Liang D, Pierzynski JA, Zheng L, Ye Y, Zhang J, et al. D-mannose: a novel prognostic biomarker for patients with esophageal adenocarcinoma. Carcinogenesis. 2017;38(2):162–7.PubMed
16.
go back to reference Gonzalez PS, O'Prey J, Cardaci S, Barthet VJA, Sakamaki JI, Beaumatin F, et al. Mannose impairs tumour growth and enhances chemotherapy. Nature. 2018;563(7733):719–23.PubMedCrossRef Gonzalez PS, O'Prey J, Cardaci S, Barthet VJA, Sakamaki JI, Beaumatin F, et al. Mannose impairs tumour growth and enhances chemotherapy. Nature. 2018;563(7733):719–23.PubMedCrossRef
17.
go back to reference Bangera M, Gowda KG, Sagurthi SR, Murthy MRN. Structural and functional insights into phosphomannose isomerase: the role of zinc and catalytic residues. Acta Crystallogr D Struct Biol. 2019;75(Pt 5):475–87.PubMedCrossRef Bangera M, Gowda KG, Sagurthi SR, Murthy MRN. Structural and functional insights into phosphomannose isomerase: the role of zinc and catalytic residues. Acta Crystallogr D Struct Biol. 2019;75(Pt 5):475–87.PubMedCrossRef
18.
go back to reference Xiao J, Guo Z, Guo Y, Chu F, Sun P. Computational study of human phosphomannose isomerase: insights from homology modeling and molecular dynamics simulation of enzyme bound substrate. J Mol Graph Model. 2006;25(3):289–95.PubMedCrossRef Xiao J, Guo Z, Guo Y, Chu F, Sun P. Computational study of human phosphomannose isomerase: insights from homology modeling and molecular dynamics simulation of enzyme bound substrate. J Mol Graph Model. 2006;25(3):289–95.PubMedCrossRef
19.
go back to reference Jeong J, Eide DJ. The SLC39 family of zinc transporters. Mol Asp Med. 2013;34(2–3):612–9.CrossRef Jeong J, Eide DJ. The SLC39 family of zinc transporters. Mol Asp Med. 2013;34(2–3):612–9.CrossRef
20.
go back to reference Huang L, Tepaamorndech S. The SLC30 family of zinc transporters - a review of current understanding of their biological and pathophysiological roles. Mol Asp Med. 2013;34(2–3):548–60.CrossRef Huang L, Tepaamorndech S. The SLC30 family of zinc transporters - a review of current understanding of their biological and pathophysiological roles. Mol Asp Med. 2013;34(2–3):548–60.CrossRef
21.
go back to reference Bin BH, Lee SH, Bhin J, Irié T, Kim S, Seo J, et al. The epithelial zinc transporter ZIP10 epigenetically regulates human epidermal homeostasis by modulating histone acetyltransferase activity. Brit J Dermatol. 2018;180(4):869–80.CrossRef Bin BH, Lee SH, Bhin J, Irié T, Kim S, Seo J, et al. The epithelial zinc transporter ZIP10 epigenetically regulates human epidermal homeostasis by modulating histone acetyltransferase activity. Brit J Dermatol. 2018;180(4):869–80.CrossRef
22.
go back to reference Miyai T, Hojyo S, Ikawa T, Kawamura M, Irie T, Ogura H, et al. Zinc transporter SLC39A10/ZIP10 facilitates antiapoptotic signaling during early B-cell development. P Natl Acad Sci USA. 2014;111(32):11780–5.CrossRef Miyai T, Hojyo S, Ikawa T, Kawamura M, Irie T, Ogura H, et al. Zinc transporter SLC39A10/ZIP10 facilitates antiapoptotic signaling during early B-cell development. P Natl Acad Sci USA. 2014;111(32):11780–5.CrossRef
23.
go back to reference Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA, et al. Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J Clin Endocrinol Metab. 2008;93(11):4331–41.PubMedPubMedCentralCrossRef Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA, et al. Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J Clin Endocrinol Metab. 2008;93(11):4331–41.PubMedPubMedCentralCrossRef
24.
go back to reference Cui B, Yang Q, Guan HX, Shi BY, Hou P, Ji MJ. PRIMA-1, a mutant p53 Reactivator, restores the sensitivity of TP53 mutant-type thyroid cancer cells to the histone methylation inhibitor 3-Deazaneplanocin A. J Clin Endocrinol Metab. 2014;99(6):E962–E70.PubMedCrossRef Cui B, Yang Q, Guan HX, Shi BY, Hou P, Ji MJ. PRIMA-1, a mutant p53 Reactivator, restores the sensitivity of TP53 mutant-type thyroid cancer cells to the histone methylation inhibitor 3-Deazaneplanocin A. J Clin Endocrinol Metab. 2014;99(6):E962–E70.PubMedCrossRef
25.
go back to reference Qiang W, Zhao Y, Yang Q, Liu W, Guan HX, Lv SQ, et al. ZIC1 is a putative tumor suppressor in thyroid cancer by modulating major signaling pathways and FOXO3a. J Clin Endocrinol Metab. 2014;35(3):E1163–72. Qiang W, Zhao Y, Yang Q, Liu W, Guan HX, Lv SQ, et al. ZIC1 is a putative tumor suppressor in thyroid cancer by modulating major signaling pathways and FOXO3a. J Clin Endocrinol Metab. 2014;35(3):E1163–72.
26.
go back to reference Sigdel S, Singh R, Kim TS, Li J, Kim SY, Kim IW, et al. Characterization of a Mannose-6-phosphate Isomerase from bacillus amyloliquefaciens and its application in Fructose-6-phosphate production. PLoS One. 2015;10(7):e0131585. Sigdel S, Singh R, Kim TS, Li J, Kim SY, Kim IW, et al. Characterization of a Mannose-6-phosphate Isomerase from bacillus amyloliquefaciens and its application in Fructose-6-phosphate production. PLoS One. 2015;10(7):e0131585.
27.
go back to reference Su X, Shen Z, Yang Q, Sui F, Pu J, Ma J, et al. Vitamin C kills thyroid cancer cells through ROS-dependent inhibition of MAPK/ERK and PI3K/AKT pathways via distinct mechanisms. Theranostics. 2019;9(15):4461–73.PubMedPubMedCentralCrossRef Su X, Shen Z, Yang Q, Sui F, Pu J, Ma J, et al. Vitamin C kills thyroid cancer cells through ROS-dependent inhibition of MAPK/ERK and PI3K/AKT pathways via distinct mechanisms. Theranostics. 2019;9(15):4461–73.PubMedPubMedCentralCrossRef
28.
go back to reference Hafliger P, Graff J, Rubin M, Stooss A, Dettmer MS, Altmann KH, et al. The LAT1 inhibitor JPH203 reduces growth of thyroid carcinoma in a fully immunocompetent mouse model. J Exp Clin Cancer Res. 2018;37(1):234.PubMedPubMedCentralCrossRef Hafliger P, Graff J, Rubin M, Stooss A, Dettmer MS, Altmann KH, et al. The LAT1 inhibitor JPH203 reduces growth of thyroid carcinoma in a fully immunocompetent mouse model. J Exp Clin Cancer Res. 2018;37(1):234.PubMedPubMedCentralCrossRef
29.
go back to reference Aggarwal A, Yuan Z, Barletta JA, Lorch JH, Nehs MA. Ketogenic diet combined with antioxidant N-acetylcysteine inhibits tumor growth in a mouse model of anaplastic thyroid cancer. Surgery. 2020;167(1):87–93.PubMedCrossRef Aggarwal A, Yuan Z, Barletta JA, Lorch JH, Nehs MA. Ketogenic diet combined with antioxidant N-acetylcysteine inhibits tumor growth in a mouse model of anaplastic thyroid cancer. Surgery. 2020;167(1):87–93.PubMedCrossRef
30.
go back to reference Pack LR, Daigh LH, Chung M, Meyer T. Clinical CDK4/6 inhibitors induce selective and immediate dissociation of p21 from cyclin D-CDK4 to inhibit CDK2. Nat Commun. 2021;12(1):3356.PubMedPubMedCentralCrossRef Pack LR, Daigh LH, Chung M, Meyer T. Clinical CDK4/6 inhibitors induce selective and immediate dissociation of p21 from cyclin D-CDK4 to inhibit CDK2. Nat Commun. 2021;12(1):3356.PubMedPubMedCentralCrossRef
31.
go back to reference Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13(12):1501–12.PubMedCrossRef Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13(12):1501–12.PubMedCrossRef
32.
go back to reference Li J, Li X, Xu W, Wang S, Hu Z, Zhang Q, et al. Antifibrotic effects of luteolin on hepatic stellate cells and liver fibrosis by targeting AKT/mTOR/p70S6K and TGFbeta/Smad signalling pathways. Liver Int. 2015;35(4):1222–33.PubMedCrossRef Li J, Li X, Xu W, Wang S, Hu Z, Zhang Q, et al. Antifibrotic effects of luteolin on hepatic stellate cells and liver fibrosis by targeting AKT/mTOR/p70S6K and TGFbeta/Smad signalling pathways. Liver Int. 2015;35(4):1222–33.PubMedCrossRef
33.
go back to reference Giono LE, Manfredi JJ. The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol. 2006;209(1):13–20.PubMedCrossRef Giono LE, Manfredi JJ. The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol. 2006;209(1):13–20.PubMedCrossRef
34.
go back to reference Schwarz M, Lossow K, Schirl K, Hackler J, Renko K, Kopp JF, et al. Copper interferes with selenoprotein synthesis and activity. Redox Biol. 2020;37:101746.PubMedPubMedCentralCrossRef Schwarz M, Lossow K, Schirl K, Hackler J, Renko K, Kopp JF, et al. Copper interferes with selenoprotein synthesis and activity. Redox Biol. 2020;37:101746.PubMedPubMedCentralCrossRef
35.
go back to reference Gerdes J, Schwab U, Lemke H, Stein H. Production of a mouse monoclonal-antibody reactive with a human nuclear antigen associated with cell-proliferation. Int J Cancer. 1983;31(1):13–20.PubMedCrossRef Gerdes J, Schwab U, Lemke H, Stein H. Production of a mouse monoclonal-antibody reactive with a human nuclear antigen associated with cell-proliferation. Int J Cancer. 1983;31(1):13–20.PubMedCrossRef
36.
go back to reference DeRossi C, Bode L, Eklund EA, Zhang F, Davis JA, Westphal V, et al. Ablation of mouse phosphomannose isomerase (Mpi) causes mannose 6-phosphate accumulation, toxicity, and embryonic lethality. J Biol Chem. 2006;281(9):5916–27.PubMedCrossRef DeRossi C, Bode L, Eklund EA, Zhang F, Davis JA, Westphal V, et al. Ablation of mouse phosphomannose isomerase (Mpi) causes mannose 6-phosphate accumulation, toxicity, and embryonic lethality. J Biol Chem. 2006;281(9):5916–27.PubMedCrossRef
37.
go back to reference Parker VER, Knox RG, Zhang QF, Wakelam MJO, Semple RK. Phosphoinositide 3-kinase-related overgrowth: cellular phenotype and future therapeutic options. Lancet. 2015;385:77.CrossRef Parker VER, Knox RG, Zhang QF, Wakelam MJO, Semple RK. Phosphoinositide 3-kinase-related overgrowth: cellular phenotype and future therapeutic options. Lancet. 2015;385:77.CrossRef
38.
go back to reference Liu Y, Wang XH, Zeng S, Zhang XN, Zhao JM, Zhang XY, et al. The natural polyphenol curcumin induces apoptosis by suppressing STAT3 signaling in esophageal squamous cell carcinoma. J Exp Clin Cancer Res. 2018;37:303. Liu Y, Wang XH, Zeng S, Zhang XN, Zhao JM, Zhang XY, et al. The natural polyphenol curcumin induces apoptosis by suppressing STAT3 signaling in esophageal squamous cell carcinoma. J Exp Clin Cancer Res. 2018;37:303.
39.
go back to reference Torretta S, Scagliola A, Ricci L, Mainini F, Di Marco S, Cuccovillo I, et al. D-mannose suppresses macrophage IL-1beta production. Nat Commun. 2020;11(1):6343.PubMedPubMedCentralCrossRef Torretta S, Scagliola A, Ricci L, Mainini F, Di Marco S, Cuccovillo I, et al. D-mannose suppresses macrophage IL-1beta production. Nat Commun. 2020;11(1):6343.PubMedPubMedCentralCrossRef
40.
go back to reference Gao H, Yu YH, Leary JA. Mechanism and kinetics of metalloenzyme phosphomannose isomerase: measurement of dissociation constants and effect of zinc binding using ESI-FTICR mass spectrometry. Anal Chem. 2005;77(17):5596–603.PubMedCrossRef Gao H, Yu YH, Leary JA. Mechanism and kinetics of metalloenzyme phosphomannose isomerase: measurement of dissociation constants and effect of zinc binding using ESI-FTICR mass spectrometry. Anal Chem. 2005;77(17):5596–603.PubMedCrossRef
41.
go back to reference Takagishi T, Hara T, Fukada T. Recent advances in the role of SLC39A/ZIP zinc transporters in vivo. Int J Mol Sci. 2017;18(12):2708.PubMedCentralCrossRef Takagishi T, Hara T, Fukada T. Recent advances in the role of SLC39A/ZIP zinc transporters in vivo. Int J Mol Sci. 2017;18(12):2708.PubMedCentralCrossRef
42.
go back to reference Nimmanon T, Ziliotto S, Ogle O, Burt A, Gee JMW, Andrews GK, et al. The ZIP6/ZIP10 heteromer is essential for the zinc-mediated trigger of mitosis. Cell Mol Life Sci. 2021;78(4):1781–98.PubMedCrossRef Nimmanon T, Ziliotto S, Ogle O, Burt A, Gee JMW, Andrews GK, et al. The ZIP6/ZIP10 heteromer is essential for the zinc-mediated trigger of mitosis. Cell Mol Life Sci. 2021;78(4):1781–98.PubMedCrossRef
43.
go back to reference Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.PubMedPubMedCentralCrossRef Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.PubMedPubMedCentralCrossRef
44.
go back to reference Parks SK, Chiche J, Pouyssegur J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer. 2013;13(9):611–23.PubMedCrossRef Parks SK, Chiche J, Pouyssegur J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer. 2013;13(9):611–23.PubMedCrossRef
45.
go back to reference Rastedt W, Blumrich EM, Dringen R. Metabolism of mannose in cultured primary rat neurons. Neurochem Res. 2017;42(8):2282–93.PubMedCrossRef Rastedt W, Blumrich EM, Dringen R. Metabolism of mannose in cultured primary rat neurons. Neurochem Res. 2017;42(8):2282–93.PubMedCrossRef
46.
go back to reference Qian Y, Bi L, Yang Y, Wang D. Effect of pyruvate kinase M2-regulating aerobic glycolysis on chemotherapy resistance of estrogen receptor-positive breast cancer. Anti-Cancer Drugs. 2018;29(7):616–27.PubMedCrossRef Qian Y, Bi L, Yang Y, Wang D. Effect of pyruvate kinase M2-regulating aerobic glycolysis on chemotherapy resistance of estrogen receptor-positive breast cancer. Anti-Cancer Drugs. 2018;29(7):616–27.PubMedCrossRef
47.
go back to reference Leung E, Cairns RA, Chaudary N, Vellanki RN, Kalliomaki T, Moriyama EH, et al. Metabolic targeting of HIF-dependent glycolysis reduces lactate, increases oxygen consumption and enhances response to high-dose single-fraction radiotherapy in hypoxic solid tumors. BMC Cancer. 2017;17(1):418.PubMedPubMedCentralCrossRef Leung E, Cairns RA, Chaudary N, Vellanki RN, Kalliomaki T, Moriyama EH, et al. Metabolic targeting of HIF-dependent glycolysis reduces lactate, increases oxygen consumption and enhances response to high-dose single-fraction radiotherapy in hypoxic solid tumors. BMC Cancer. 2017;17(1):418.PubMedPubMedCentralCrossRef
49.
go back to reference Zappasodi R, Serganova I, Cohen IJ, Maeda M, Shindo M, Senbabaoglu Y, et al. CTLA-4 blockade drives loss of Treg stability in glycolysis-low tumours. Nature. 2021;591(7851):652–8.PubMedPubMedCentralCrossRef Zappasodi R, Serganova I, Cohen IJ, Maeda M, Shindo M, Senbabaoglu Y, et al. CTLA-4 blockade drives loss of Treg stability in glycolysis-low tumours. Nature. 2021;591(7851):652–8.PubMedPubMedCentralCrossRef
50.
go back to reference Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM, Grebinoski S, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. 2021;591(7851):645–51.PubMedPubMedCentralCrossRef Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM, Grebinoski S, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. 2021;591(7851):645–51.PubMedPubMedCentralCrossRef
Metadata
Title
ZIP10 is a negative determinant for anti-tumor effect of mannose in thyroid cancer by activating phosphate mannose isomerase
Authors
Sharui Ma
Na Wang
Rui Liu
Rui Zhang
Hui Dang
Yubo Wang
Simeng Wang
Zekun Zeng
Meiju Ji
Peng Hou
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2021
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-021-02195-z

Other articles of this Issue 1/2021

Journal of Experimental & Clinical Cancer Research 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine