Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Thymoma | Research

The clinicopathological significance of thymic epithelial markers expression in thymoma and thymic carcinoma

Authors: Huiyang Li, Bo Ren, Shili Yu, Hongwen Gao, Ping-Li Sun

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

The classification of thymomas is based on the morphology of epithelial tumor cells and the proportion of lymphocytes. Type A thymomas are composed of the spindle or oval tumor epithelial cells. Tumor cells of B thymomas are epithelioid-shaped with increasing atypia. Type AB thymomas have the features of epithelial tumor cells of A and B thymomas. The diagnosis can be difficult because of the complex morphology. Some novel thymic epithelial markers have been reported in several preclinical studies, but they have not been applied to clinical practice. Here, we investigated the expression of 3 cortical and 3 medullary markers, which are thymoproteasome-specific subunit β5t (β5t), thymus-specific serine protease 16 (PRSS16), cathepsin V, autoimmune regulator (AIRE), CD40 and claudin-4.

Methods

Immunohistochemistry was used to analyze 53 cases of thymomas and thymic squamous cell carcinomas (TSCC), aiming to explore the expression of cortical and medullary epithelial markers and their correlation with histological classification, Masaoka-Koga stage, and prognosis.

Results

Our results found that for cortical epithelial markers the expression of β5t, PRSS16, and cathepsin V was higher in type AB and B thymomas than in micronodular thymoma with lymphoid stroma (MNT), and we observed a dramatic increase of β5t and PRSS16 expression in type AB compared to type A thymomas. In medullary epithelial markers, the expression of AIRE was higher in type A than in B3 thymomas. CD40 and β5t expression were associated with the Masaoka-Koga stage. High cathepsin V expression was related to a good prognosis and a longer progression-free survival.

Conclusion

This is the first comprehensive analysis of the role of thymic cortical and medullary epithelial markers as biomarkers for differential diagnosis and prognosis in thymic tumors. Thymic medullary epithelial immunophenotype was found to exhibit in type A, MNT, and TSCC. Type B thymomas primarily exhibited a cortical epithelial immunophenotype. Type AB thymomas showed cortical, medullary, or mixed corticomedullary epithelial immunophenotype. Our results demonstrated that thymic cortical and medullary epithelial markers including β5t, PRSS16, cathepsin V, and AIRE could be used as ancillary markers in the diagnosis and prognosis of thymic epithelial tumors.
Literature
1.
go back to reference WHO Classification of Tumours Editorial Board. Thoracic tumours. WHO classification of Tumours. 5th ed. Lyon, France: International Agency for Research on Cancer; 2021. WHO Classification of Tumours Editorial Board. Thoracic tumours. WHO classification of Tumours. 5th ed. Lyon, France: International Agency for Research on Cancer; 2021.
2.
go back to reference Valavanis C, Stanc GM, Baltayiannis N. Classification, histopathology and molecular pathology of thymic epithelial tumors: a review. J BUON: official J Balkan Union Oncol. 2021;26(4):1198–207. Valavanis C, Stanc GM, Baltayiannis N. Classification, histopathology and molecular pathology of thymic epithelial tumors: a review. J BUON: official J Balkan Union Oncol. 2021;26(4):1198–207.
3.
go back to reference Bernatz PE, Harrison EG, Clagett OT. Thymoma: a clinicopathologic study. J Thorac Cardiovasc Surg. 1961;42:424–44.CrossRefPubMed Bernatz PE, Harrison EG, Clagett OT. Thymoma: a clinicopathologic study. J Thorac Cardiovasc Surg. 1961;42:424–44.CrossRefPubMed
4.
go back to reference Marino M, Muller-Hermelink HK. Thymoma and thymic carcinoma. Relation of thymoma epithelial cells to the cortical and medullary differentiation of thymus. Virchows Arch A Pathol Anat Histopathol. 1985;407(2):119–49.CrossRefPubMed Marino M, Muller-Hermelink HK. Thymoma and thymic carcinoma. Relation of thymoma epithelial cells to the cortical and medullary differentiation of thymus. Virchows Arch A Pathol Anat Histopathol. 1985;407(2):119–49.CrossRefPubMed
5.
go back to reference Okumura M, Shiono H, Minami M, Inoue M, Utsumi T, Kadota Y, et al. Clinical and pathological aspects of thymic epithelial tumors. Gen Thorac Cardiovasc Surg. 2008;56(1):10–6.CrossRefPubMed Okumura M, Shiono H, Minami M, Inoue M, Utsumi T, Kadota Y, et al. Clinical and pathological aspects of thymic epithelial tumors. Gen Thorac Cardiovasc Surg. 2008;56(1):10–6.CrossRefPubMed
6.
go back to reference Kondo K, Yoshizawa K, Tsuyuguchi M, Kimura S, Sumitomo M, Morita J, et al. WHO histologic classification is a prognostic indicator in thymoma. Ann Thorac Surg. 2004;77(4):1183–8.CrossRefPubMed Kondo K, Yoshizawa K, Tsuyuguchi M, Kimura S, Sumitomo M, Morita J, et al. WHO histologic classification is a prognostic indicator in thymoma. Ann Thorac Surg. 2004;77(4):1183–8.CrossRefPubMed
7.
go back to reference Lee GD, Kim HR, Choi SH, Kim YH, Kim DK, Park SI. Prognostic stratification of thymic epithelial tumors based on both Masaoka-Koga stage and WHO classification systems. J Thorac disease. 2016;8(5):901–10.CrossRef Lee GD, Kim HR, Choi SH, Kim YH, Kim DK, Park SI. Prognostic stratification of thymic epithelial tumors based on both Masaoka-Koga stage and WHO classification systems. J Thorac disease. 2016;8(5):901–10.CrossRef
8.
go back to reference Tseng YC, Tseng YH, Kao HL, Hsieh CC, Chou TY, Goan YG, et al. Long term oncological outcome of thymoma and thymic carcinoma - an analysis of 235 cases from a single institution. PLoS ONE. 2017;12(6):e0179527.CrossRefPubMedPubMedCentral Tseng YC, Tseng YH, Kao HL, Hsieh CC, Chou TY, Goan YG, et al. Long term oncological outcome of thymoma and thymic carcinoma - an analysis of 235 cases from a single institution. PLoS ONE. 2017;12(6):e0179527.CrossRefPubMedPubMedCentral
9.
go back to reference Alkaaki A, Abo Al-Saud A, Di Lena É, Ramirez-GarciaLuna JL, Najmeh S, Spicer J, et al. Factors predicting recurrence in thymic epithelial neoplasms. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery. 2022;62(5). Alkaaki A, Abo Al-Saud A, Di Lena É, Ramirez-GarciaLuna JL, Najmeh S, Spicer J, et al. Factors predicting recurrence in thymic epithelial neoplasms. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery. 2022;62(5).
10.
go back to reference Wolf JL, van Nederveen F, Blaauwgeers H, Marx A, Nicholson AG, Roden AC, et al. Interobserver variation in the classification of thymic lesions including biopsies and resection specimens in an international digital microscopy panel. Histopathology. 2020;77(5):734–41.CrossRefPubMedPubMedCentral Wolf JL, van Nederveen F, Blaauwgeers H, Marx A, Nicholson AG, Roden AC, et al. Interobserver variation in the classification of thymic lesions including biopsies and resection specimens in an international digital microscopy panel. Histopathology. 2020;77(5):734–41.CrossRefPubMedPubMedCentral
11.
go back to reference Zucali PA, Di Tommaso L, Petrini I, Battista S, Lee HS, Merino M, et al. Reproducibility of the WHO classification of thymomas: practical implications. Lung cancer (Amsterdam Netherlands). 2013;79(3):236–41.CrossRefPubMed Zucali PA, Di Tommaso L, Petrini I, Battista S, Lee HS, Merino M, et al. Reproducibility of the WHO classification of thymomas: practical implications. Lung cancer (Amsterdam Netherlands). 2013;79(3):236–41.CrossRefPubMed
12.
go back to reference Roden AC, Yi ES, Jenkins SM, Edwards KK, Donovan JL, Lewis JE, et al. Reproducibility of 3 histologic classifications and 3 staging systems for thymic epithelial neoplasms and its effect on prognosis. Am J Surg Pathol. 2015;39(4):427–41.CrossRefPubMed Roden AC, Yi ES, Jenkins SM, Edwards KK, Donovan JL, Lewis JE, et al. Reproducibility of 3 histologic classifications and 3 staging systems for thymic epithelial neoplasms and its effect on prognosis. Am J Surg Pathol. 2015;39(4):427–41.CrossRefPubMed
13.
go back to reference Yamada Y, Tomaru U, Ishizu A, Kiuchi T, Marukawa K, Matsuno Y, et al. Expression of proteasome subunit β5t in thymic epithelial tumors. Am J Surg Pathol. 2011;35(9):1296–304.CrossRefPubMed Yamada Y, Tomaru U, Ishizu A, Kiuchi T, Marukawa K, Matsuno Y, et al. Expression of proteasome subunit β5t in thymic epithelial tumors. Am J Surg Pathol. 2011;35(9):1296–304.CrossRefPubMed
14.
go back to reference Angirekula M, Chang SY, Jenkins SM, Greipp PT, Sukov WR, Marks RS et al. CD117, BAP1, MTAP, and TdT Is a Useful Immunohistochemical Panel to Distinguish Thymoma from Thymic Carcinoma.Cancers. 2022;14(9). Angirekula M, Chang SY, Jenkins SM, Greipp PT, Sukov WR, Marks RS et al. CD117, BAP1, MTAP, and TdT Is a Useful Immunohistochemical Panel to Distinguish Thymoma from Thymic Carcinoma.Cancers. 2022;14(9).
15.
go back to reference Roden AC, Yi ES, Jenkins SM, Donovan JL, Cassivi SD, Garces YI, et al. Diagnostic significance of cell kinetic parameters in World Health Organization type A and B3 thymomas and thymic carcinomas. Hum Pathol. 2015;46(1):17–25.CrossRefPubMed Roden AC, Yi ES, Jenkins SM, Donovan JL, Cassivi SD, Garces YI, et al. Diagnostic significance of cell kinetic parameters in World Health Organization type A and B3 thymomas and thymic carcinomas. Hum Pathol. 2015;46(1):17–25.CrossRefPubMed
16.
go back to reference Kojika M, Ishii G, Yoshida J, Nishimura M, Hishida T, Ota SJ, et al. Immunohistochemical differential diagnosis between thymic carcinoma and type B3 thymoma: diagnostic utility of hypoxic marker, GLUT-1, in thymic epithelial neoplasms. Mod pathology: official J United States Can Acad Pathol Inc. 2009;22(10):1341–50.CrossRef Kojika M, Ishii G, Yoshida J, Nishimura M, Hishida T, Ota SJ, et al. Immunohistochemical differential diagnosis between thymic carcinoma and type B3 thymoma: diagnostic utility of hypoxic marker, GLUT-1, in thymic epithelial neoplasms. Mod pathology: official J United States Can Acad Pathol Inc. 2009;22(10):1341–50.CrossRef
17.
go back to reference Illei PB, Shyu S. Fine needle aspiration of thymic epithelial neoplasms and non-neoplastic lesions. Semin Diagn Pathol. 2020;37(4):166–73.CrossRefPubMed Illei PB, Shyu S. Fine needle aspiration of thymic epithelial neoplasms and non-neoplastic lesions. Semin Diagn Pathol. 2020;37(4):166–73.CrossRefPubMed
18.
go back to reference Yamada Y, Tomaru U, Ishizu A, Kiuchi T, Marukawa K, Matsuno Y, et al. Expression of proteasome subunit beta5t in thymic epithelial tumors. Am J Surg Pathol. 2011;35(9):1296–304.CrossRefPubMed Yamada Y, Tomaru U, Ishizu A, Kiuchi T, Marukawa K, Matsuno Y, et al. Expression of proteasome subunit beta5t in thymic epithelial tumors. Am J Surg Pathol. 2011;35(9):1296–304.CrossRefPubMed
19.
go back to reference Yamada Y, Tomaru U, Ishizu A, Kiuchi T, Kasahara M, Matsuno Y. Expression of thymoproteasome subunit β5t in type AB thymoma. J Clin Pathol. 2014;67(3):276–8.CrossRefPubMed Yamada Y, Tomaru U, Ishizu A, Kiuchi T, Kasahara M, Matsuno Y. Expression of thymoproteasome subunit β5t in type AB thymoma. J Clin Pathol. 2014;67(3):276–8.CrossRefPubMed
20.
go back to reference Tomaru U, Kasahara M. Thymoproteasome: role in thymic selection and clinical significance as a diagnostic marker for thymic epithelial tumors. Arch Immunol Ther Exp (Warsz). 2013;61(5):357–65.CrossRefPubMed Tomaru U, Kasahara M. Thymoproteasome: role in thymic selection and clinical significance as a diagnostic marker for thymic epithelial tumors. Arch Immunol Ther Exp (Warsz). 2013;61(5):357–65.CrossRefPubMed
21.
go back to reference Tomaru U, Yamada Y, Ishizu A, Kuroda T, Matsuno Y, Kasahara M. Proteasome subunit β5t expression in cervical ectopic thymoma. J Clin Pathol. 2012;65(9):858–9.CrossRefPubMed Tomaru U, Yamada Y, Ishizu A, Kuroda T, Matsuno Y, Kasahara M. Proteasome subunit β5t expression in cervical ectopic thymoma. J Clin Pathol. 2012;65(9):858–9.CrossRefPubMed
22.
go back to reference Kiuchi S, Tomaru U, Ishizu A, Imagawa M, Kiuchi T, Iwasaki S, et al. Expression of cathepsins V and S in thymic epithelial tumors. Hum Pathol. 2017;60:66–74.CrossRefPubMed Kiuchi S, Tomaru U, Ishizu A, Imagawa M, Kiuchi T, Iwasaki S, et al. Expression of cathepsins V and S in thymic epithelial tumors. Hum Pathol. 2017;60:66–74.CrossRefPubMed
23.
go back to reference Gommeaux J, Gregoire C, Nguessan P, Richelme M, Malissen M, Guerder S, et al. Thymus-specific serine protease regulates positive selection of a subset of CD4 + thymocytes. Eur J Immunol. 2009;39(4):956–64.CrossRefPubMed Gommeaux J, Gregoire C, Nguessan P, Richelme M, Malissen M, Guerder S, et al. Thymus-specific serine protease regulates positive selection of a subset of CD4 + thymocytes. Eur J Immunol. 2009;39(4):956–64.CrossRefPubMed
24.
go back to reference Kawano H, Nishijima H, Morimoto J, Hirota F, Morita R, Mouri Y, et al. Aire expression is inherent to most medullary thymic epithelial cells during their differentiation program. J Immunol. 2015;195(11):5149–58.CrossRefPubMed Kawano H, Nishijima H, Morimoto J, Hirota F, Morita R, Mouri Y, et al. Aire expression is inherent to most medullary thymic epithelial cells during their differentiation program. J Immunol. 2015;195(11):5149–58.CrossRefPubMed
25.
go back to reference Wang X, Laan M, Bichele R, Kisand K, Scott HS, Peterson P. Post-Aire maturation of thymic medullary epithelial cells involves selective expression of keratinocyte-specific autoantigens. Front Immunol. 2012;3(March):19.PubMedPubMedCentral Wang X, Laan M, Bichele R, Kisand K, Scott HS, Peterson P. Post-Aire maturation of thymic medullary epithelial cells involves selective expression of keratinocyte-specific autoantigens. Front Immunol. 2012;3(March):19.PubMedPubMedCentral
26.
go back to reference Galy AH, Spits H. CD40 is functionally expressed on human thymic epithelial cells. J Immunol. 1992;149(3):775–82.CrossRefPubMed Galy AH, Spits H. CD40 is functionally expressed on human thymic epithelial cells. J Immunol. 1992;149(3):775–82.CrossRefPubMed
27.
go back to reference Ichimiya S, Kojima T. Cellular networks of human thymic medullary stromas coordinated by p53-related transcription factors. J Histochem Cytochem. 2006;54(11):1277–89.CrossRefPubMed Ichimiya S, Kojima T. Cellular networks of human thymic medullary stromas coordinated by p53-related transcription factors. J Histochem Cytochem. 2006;54(11):1277–89.CrossRefPubMed
29.
go back to reference Ströbel P, Hartmann E, Rosenwald A, Kalla J, Ott G, Friedel G, et al. Corticomedullary differentiation and maturational arrest in thymomas. Histopathology. 2014;64(4):557–66.CrossRefPubMed Ströbel P, Hartmann E, Rosenwald A, Kalla J, Ott G, Friedel G, et al. Corticomedullary differentiation and maturational arrest in thymomas. Histopathology. 2014;64(4):557–66.CrossRefPubMed
30.
go back to reference Yamada Y, Sugimoto A, Hoki M, Yoshizawa A, Hamaji M, Date H, et al. POU2F3 beyond thymic carcinomas: expression across the spectrum of thymomas hints to medullary differentiation in type a thymoma. Virchows Archiv: an international journal of pathology. 2022;480(4):843–51.CrossRefPubMed Yamada Y, Sugimoto A, Hoki M, Yoshizawa A, Hamaji M, Date H, et al. POU2F3 beyond thymic carcinomas: expression across the spectrum of thymomas hints to medullary differentiation in type a thymoma. Virchows Archiv: an international journal of pathology. 2022;480(4):843–51.CrossRefPubMed
31.
go back to reference Liu PP, Su YC, Niu Y, Shi YF, Luo J, Zhong DR. Comparative clinicopathological and immunohistochemical study of micronodular thymoma and micronodular thymic carcinoma with lymphoid stroma. Journal of clinical pathology. 2021;75(10):702-5. Liu PP, Su YC, Niu Y, Shi YF, Luo J, Zhong DR. Comparative clinicopathological and immunohistochemical study of micronodular thymoma and micronodular thymic carcinoma with lymphoid stroma. Journal of clinical pathology. 2021;75(10):702-5.
32.
go back to reference Miki Y, Hamada K, Yoshino T, Miyatani K, Takahashi K. Type AB thymoma is not a mixed tumor of type A and type B thymomas, but a distinct type of thymoma. Virchows Archiv: an international journal of pathology. 2014;464(6):725–34.CrossRefPubMed Miki Y, Hamada K, Yoshino T, Miyatani K, Takahashi K. Type AB thymoma is not a mixed tumor of type A and type B thymomas, but a distinct type of thymoma. Virchows Archiv: an international journal of pathology. 2014;464(6):725–34.CrossRefPubMed
33.
go back to reference Suzuki E, Kobayashi Y, Yano M, Fujii Y. Infrequent and low AIRE expression in thymoma: difference in AIRE expression among WHO subtypes does not correlate with association of MG. Autoimmunity. 2008;41(5):377–82.CrossRefPubMed Suzuki E, Kobayashi Y, Yano M, Fujii Y. Infrequent and low AIRE expression in thymoma: difference in AIRE expression among WHO subtypes does not correlate with association of MG. Autoimmunity. 2008;41(5):377–82.CrossRefPubMed
34.
go back to reference Mneimneh WS, Gökmen-Polar Y, Kesler KA, Loehrer PJ, Sr., Badve S. Micronodular thymic neoplasms: case series and literature review with emphasis on the spectrum of differentiation. Mod pathology: official J United States Can Acad Pathol Inc. 2015;28(11):1415–27.CrossRef Mneimneh WS, Gökmen-Polar Y, Kesler KA, Loehrer PJ, Sr., Badve S. Micronodular thymic neoplasms: case series and literature review with emphasis on the spectrum of differentiation. Mod pathology: official J United States Can Acad Pathol Inc. 2015;28(11):1415–27.CrossRef
36.
go back to reference Ströbel P, Chuang WY, Chuvpilo S, Zettl A, Katzenberger T, Kalbacher H, et al. Common cellular and diverse genetic basis of thymoma-associated myasthenia gravis: role of MHC class II and AIRE genes and genetic polymorphisms. Ann N Y Acad Sci. 2008;1132:143–56.CrossRefPubMed Ströbel P, Chuang WY, Chuvpilo S, Zettl A, Katzenberger T, Kalbacher H, et al. Common cellular and diverse genetic basis of thymoma-associated myasthenia gravis: role of MHC class II and AIRE genes and genetic polymorphisms. Ann N Y Acad Sci. 2008;1132:143–56.CrossRefPubMed
37.
go back to reference Liu Y, Zhang H, Zhang P, Meng F, Chen Y, Wang Y, et al. Autoimmune regulator expression in thymomas with or without autoimmune disease. Immunol Lett. 2014;161(1):50–6.CrossRefPubMed Liu Y, Zhang H, Zhang P, Meng F, Chen Y, Wang Y, et al. Autoimmune regulator expression in thymomas with or without autoimmune disease. Immunol Lett. 2014;161(1):50–6.CrossRefPubMed
38.
go back to reference Zeng H, Yang W, Xu B, Zou J, Su C, Zhong B, et al. Relationship of possible biomarkers with malignancy of thymic tumors: a meta-analysis. BMC Cancer. 2020;20(1):928.CrossRefPubMedPubMedCentral Zeng H, Yang W, Xu B, Zou J, Su C, Zhong B, et al. Relationship of possible biomarkers with malignancy of thymic tumors: a meta-analysis. BMC Cancer. 2020;20(1):928.CrossRefPubMedPubMedCentral
39.
go back to reference Slobodova Z, Ehrmann J, Krejci V, Zapletalova J, Melichar B. Analysis of CD40 expression in breast cancer and its relation to clinicopathological characteristics. Neoplasma. 2011;58(3):189–97.CrossRefPubMed Slobodova Z, Ehrmann J, Krejci V, Zapletalova J, Melichar B. Analysis of CD40 expression in breast cancer and its relation to clinicopathological characteristics. Neoplasma. 2011;58(3):189–97.CrossRefPubMed
40.
go back to reference Li R, Chen WC, Pang XQ, Hua C, Li L, Zhang XG. Expression of CD40 and CD40L in gastric cancer tissue and its clinical significance. Int J Mol Sci. 2009;10(9):3900–17.CrossRefPubMedPubMedCentral Li R, Chen WC, Pang XQ, Hua C, Li L, Zhang XG. Expression of CD40 and CD40L in gastric cancer tissue and its clinical significance. Int J Mol Sci. 2009;10(9):3900–17.CrossRefPubMedPubMedCentral
41.
go back to reference Matsumura Y, Hiraoka K, Ishikawa K, Shoji Y, Noji T, Hontani K, et al. CD40 expression in human esophageal squamous cell carcinoma is Associated with Tumor Progression and Lymph Node Metastasis. Anticancer Res. 2016;36(9):4467–75.CrossRefPubMed Matsumura Y, Hiraoka K, Ishikawa K, Shoji Y, Noji T, Hontani K, et al. CD40 expression in human esophageal squamous cell carcinoma is Associated with Tumor Progression and Lymph Node Metastasis. Anticancer Res. 2016;36(9):4467–75.CrossRefPubMed
42.
go back to reference Referenced with permission from the NCCN Clinical Practice Guidelines in. Oncology (NCCN Guidelines®) for Guideline Thymomas and Thymic Carcinomas V.1.2023. © National Comprehensive Cancer Network, Inc. 2022. All rights reserved. Accessed [Dec and 17 2022]. To view the most recent and complete version of the guideline, go online to NCCN.org. Referenced with permission from the NCCN Clinical Practice Guidelines in. Oncology (NCCN Guidelines®) for Guideline Thymomas and Thymic Carcinomas V.1.2023. © National Comprehensive Cancer Network, Inc. 2022. All rights reserved. Accessed [Dec and 17 2022]. To view the most recent and complete version of the guideline, go online to NCCN.org.
43.
go back to reference Toss M, Miligy I, Gorringe K, Mittal K, Aneja R, Ellis I, et al. Prognostic significance of cathepsin V (CTSV/CTSL2) in breast ductal carcinoma in situ. J Clin Pathol. 2020;73(2):76–82.CrossRefPubMed Toss M, Miligy I, Gorringe K, Mittal K, Aneja R, Ellis I, et al. Prognostic significance of cathepsin V (CTSV/CTSL2) in breast ductal carcinoma in situ. J Clin Pathol. 2020;73(2):76–82.CrossRefPubMed
44.
go back to reference Jing J, Wang S, Ma J, Yu L, Zhou H. Elevated CTSL2 expression is associated with an adverse prognosis in hepatocellular carcinoma. Int J Clin Exp Pathol. 2018;11(8):4035–43.PubMedPubMedCentral Jing J, Wang S, Ma J, Yu L, Zhou H. Elevated CTSL2 expression is associated with an adverse prognosis in hepatocellular carcinoma. Int J Clin Exp Pathol. 2018;11(8):4035–43.PubMedPubMedCentral
Metadata
Title
The clinicopathological significance of thymic epithelial markers expression in thymoma and thymic carcinoma
Authors
Huiyang Li
Bo Ren
Shili Yu
Hongwen Gao
Ping-Li Sun
Publication date
01-12-2023
Publisher
BioMed Central
Keywords
Thymoma
Thymoma
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-10619-6

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine