Skip to main content
Top
Published in: Skeletal Radiology 11/2018

Open Access 01-11-2018 | Scientific Article

Three-material decomposition with dual-layer spectral CT compared to MRI for the detection of bone marrow edema in patients with acute vertebral fractures

Authors: Benedikt J. Schwaiger, Alexandra S. Gersing, Johannes Hammel, Kai Mei, Felix K. Kopp, Jan S. Kirschke, Ernst J. Rummeny, Klaus Wörtler, Thomas Baum, Peter B. Noël

Published in: Skeletal Radiology | Issue 11/2018

Login to get access

Abstract

Objectives

To assess whether bone marrow edema in patients with acute vertebral fractures can be accurately diagnosed based on three-material decomposition with dual-layer spectral CT (DLCT).

Materials and methods

Acute (n = 41) and chronic (n = 18) osteoporotic thoracolumbar vertebral fractures as diagnosed by MRI (hyperintense signal in STIR sequences) in 27 subjects (72 ± 11 years; 17 women) were assessed with DLCT. Spectral data were decomposed into hydroxyapatite, edema-equivalent, and fat-equivalent density maps using an in-house-developed algorithm. Two radiologists, blinded to clinical and MR findings, assessed DLCT and conventional CT independently, using a Likert scale (1 = no edema; 2 = likely no edema; 3 = likely edema; 4 = edema). For DLCT and conventional CT, accuracy, sensitivity, and specificity for identifying acute fractures (Likert scale, 3 and 4) were analyzed separately using MRI as standard of reference.

Results

For the identification of acute fractures, conventional CT showed a sensitivity of 0.73–0.76 and specificity of 0.78–0.83, whereas the sensitivity (0.93–0.95) and specificity (0.89) of decomposed DLCT images were substantially higher. Accuracy increased from 0.76 for conventional CT to 0.92–0.93 using DLCT. Interreader agreement for fracture assessment was high in conventional CT (weighted κ [95% confidence interval]; 0.81 [0.70; 0.92]) and DLCT (0.96 [0.92; 1.00]).

Conclusions

Material decomposition of DLCT data substantially improved accuracy for the diagnosis of acute vertebral fractures, with a high interreader agreement. This may spare patients additional examinations and facilitate the diagnosis of vertebral fractures.
Literature
1.
go back to reference Ballane G, Cauley JA, Luckey MM, El-Hajj Fuleihan G. Worldwide prevalence and incidence of osteoporotic vertebral fractures. Osteoporos Int. 2017. Ballane G, Cauley JA, Luckey MM, El-Hajj Fuleihan G. Worldwide prevalence and incidence of osteoporotic vertebral fractures. Osteoporos Int. 2017.
2.
go back to reference Kado DM, Duong T, Stone KL, Ensrud KE, Nevitt MC, Greendale GA, et al. Incident vertebral fractures and mortality in older women: a prospective study. Osteoporos Int. 2003;14(7):589–94.CrossRefPubMed Kado DM, Duong T, Stone KL, Ensrud KE, Nevitt MC, Greendale GA, et al. Incident vertebral fractures and mortality in older women: a prospective study. Osteoporos Int. 2003;14(7):589–94.CrossRefPubMed
3.
go back to reference Schnake KJ, Schroeder GD, Vaccaro AR, Oner C. AOSpine classification systems (subaxial, thoracolumbar). J Orthop Trauma. 2017;31(Suppl 4):S14–23.CrossRefPubMed Schnake KJ, Schroeder GD, Vaccaro AR, Oner C. AOSpine classification systems (subaxial, thoracolumbar). J Orthop Trauma. 2017;31(Suppl 4):S14–23.CrossRefPubMed
4.
go back to reference Mandalia V, Henson JH. Traumatic bone bruising—a review article. Eur J Radiol. 2008;67(1):54–61.CrossRefPubMed Mandalia V, Henson JH. Traumatic bone bruising—a review article. Eur J Radiol. 2008;67(1):54–61.CrossRefPubMed
5.
go back to reference Piazzolla A, Solarino G, Lamartina C, De Giorgi S, Bizzoca D, Berjano P, et al. Vertebral bone marrow edema (VBME) in conservatively treated acute vertebral compression fractures (VCFs): evolution and clinical correlations. Spine (Phila Pa 1976). 2015;40(14):E842–8.CrossRef Piazzolla A, Solarino G, Lamartina C, De Giorgi S, Bizzoca D, Berjano P, et al. Vertebral bone marrow edema (VBME) in conservatively treated acute vertebral compression fractures (VCFs): evolution and clinical correlations. Spine (Phila Pa 1976). 2015;40(14):E842–8.CrossRef
6.
go back to reference Qaiyum M, Tyrrell PN, McCall IW, Cassar-Pullicino VN. MRI detection of unsuspected vertebral injury in acute spinal trauma: incidence and significance. Skelet Radiol. 2001;30(6):299–304.CrossRef Qaiyum M, Tyrrell PN, McCall IW, Cassar-Pullicino VN. MRI detection of unsuspected vertebral injury in acute spinal trauma: incidence and significance. Skelet Radiol. 2001;30(6):299–304.CrossRef
7.
go back to reference McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology. 2015;276(3):637–53.CrossRefPubMedPubMedCentral McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology. 2015;276(3):637–53.CrossRefPubMedPubMedCentral
8.
go back to reference Vetter JR, Perman WH, Kalender WA, Mazess RB, Holden JE. Evaluation of a prototype dual-energy computed tomographic apparatus. II. Determination of vertebral bone mineral content. Med Phys. 1986;13(3):340–3.CrossRefPubMed Vetter JR, Perman WH, Kalender WA, Mazess RB, Holden JE. Evaluation of a prototype dual-energy computed tomographic apparatus. II. Determination of vertebral bone mineral content. Med Phys. 1986;13(3):340–3.CrossRefPubMed
9.
go back to reference Kalender WA, Perman WH, Vetter JR, Klotz E. Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys. 1986;13(3):334–9.CrossRefPubMed Kalender WA, Perman WH, Vetter JR, Klotz E. Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys. 1986;13(3):334–9.CrossRefPubMed
10.
go back to reference Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA. Dual-energy CT for the musculoskeletal system. Radiology. 2016;281(3):690–707.CrossRefPubMed Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA. Dual-energy CT for the musculoskeletal system. Radiology. 2016;281(3):690–707.CrossRefPubMed
11.
go back to reference Altman A, Carmi R. TU-E-210A-03: a double-layer detector, dual-energy CT—principles, advantages and applications. Med Phys. 2009;36(6):2750.CrossRef Altman A, Carmi R. TU-E-210A-03: a double-layer detector, dual-energy CT—principles, advantages and applications. Med Phys. 2009;36(6):2750.CrossRef
12.
go back to reference Ehn S, Sellerer T, Muenzel D, Fingerle AA, Kopp F, Duda M, et al. Assessment of quantification accuracy and image quality of a full-body dual-layer spectral CT system. J Appl Clin Med Phys. 2018;19(1):204–17.CrossRefPubMed Ehn S, Sellerer T, Muenzel D, Fingerle AA, Kopp F, Duda M, et al. Assessment of quantification accuracy and image quality of a full-body dual-layer spectral CT system. J Appl Clin Med Phys. 2018;19(1):204–17.CrossRefPubMed
13.
go back to reference Pelgrim GJ, van Hamersvelt RW, Willemink MJ, Schmidt BT, Flohr T, Schilham A, et al. Accuracy of iodine quantification using dual-energy CT in latest-generation dual-source and dual-layer CT. Eur Radiol. 2017;27(9):3904–12.CrossRefPubMedPubMedCentral Pelgrim GJ, van Hamersvelt RW, Willemink MJ, Schmidt BT, Flohr T, Schilham A, et al. Accuracy of iodine quantification using dual-energy CT in latest-generation dual-source and dual-layer CT. Eur Radiol. 2017;27(9):3904–12.CrossRefPubMedPubMedCentral
14.
go back to reference Sellerer T, Noel PB, Patino M, Parakh A, Ehn S, Zeiter S, et al. Dual-energy CT: a phantom comparison of different platforms for abdominal imaging. Eur Radiol. 2018. Sellerer T, Noel PB, Patino M, Parakh A, Ehn S, Zeiter S, et al. Dual-energy CT: a phantom comparison of different platforms for abdominal imaging. Eur Radiol. 2018.
15.
go back to reference Petritsch B, Kosmala A, Weng AM, Krauss B, Heidemeier A, Wagner R, et al. Vertebral compression fractures: third-generation dual-energy CT for detection of bone marrow edema at visual and quantitative analyses. Radiology. 2017;284(1):161–8.CrossRefPubMed Petritsch B, Kosmala A, Weng AM, Krauss B, Heidemeier A, Wagner R, et al. Vertebral compression fractures: third-generation dual-energy CT for detection of bone marrow edema at visual and quantitative analyses. Radiology. 2017;284(1):161–8.CrossRefPubMed
16.
go back to reference Kaup M, Wichmann JL, Scholtz JE, Beeres M, Kromen W, Albrecht MH, et al. Dual-energy CT-based display of bone marrow edema in osteoporotic vertebral compression fractures: impact on diagnostic accuracy of radiologists with varying levels of experience in correlation to MR imaging. Radiology. 2016;280(2):510–9.CrossRefPubMed Kaup M, Wichmann JL, Scholtz JE, Beeres M, Kromen W, Albrecht MH, et al. Dual-energy CT-based display of bone marrow edema in osteoporotic vertebral compression fractures: impact on diagnostic accuracy of radiologists with varying levels of experience in correlation to MR imaging. Radiology. 2016;280(2):510–9.CrossRefPubMed
17.
go back to reference Karaca L, Yuceler Z, Kantarci M, Cakir M, Sade R, Calikoglu C, et al. The feasibility of dual-energy CT in differentiation of vertebral compression fractures. Br J Radiol. 2016;89(1057):20150300.CrossRefPubMed Karaca L, Yuceler Z, Kantarci M, Cakir M, Sade R, Calikoglu C, et al. The feasibility of dual-energy CT in differentiation of vertebral compression fractures. Br J Radiol. 2016;89(1057):20150300.CrossRefPubMed
18.
go back to reference Bierry G, Venkatasamy A, Kremer S, Dosch JC, Dietemann JL. Dual-energy CT in vertebral compression fractures: performance of visual and quantitative analysis for bone marrow edema demonstration with comparison to MRI. Skelet Radiol. 2014;43(4):485–92.CrossRef Bierry G, Venkatasamy A, Kremer S, Dosch JC, Dietemann JL. Dual-energy CT in vertebral compression fractures: performance of visual and quantitative analysis for bone marrow edema demonstration with comparison to MRI. Skelet Radiol. 2014;43(4):485–92.CrossRef
19.
go back to reference Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol. 2012;199(5 Suppl):S9–S15.CrossRefPubMed Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol. 2012;199(5 Suppl):S9–S15.CrossRefPubMed
20.
go back to reference Mendonca PR, Lamb P, Sahani DV. A flexible method for multi-material decomposition of dual-energy CT images. IEEE Trans Med Imaging. 2014;33(1):99–116.CrossRefPubMed Mendonca PR, Lamb P, Sahani DV. A flexible method for multi-material decomposition of dual-energy CT images. IEEE Trans Med Imaging. 2014;33(1):99–116.CrossRefPubMed
22.
go back to reference White DR, Griffith RV, Wilson IJ. Report 46. Photon, electron, proton and neutron interaction data for body tissues. JICRU. 1992; os24(1). White DR, Griffith RV, Wilson IJ. Report 46. Photon, electron, proton and neutron interaction data for body tissues. JICRU. 1992; os24(1).
23.
go back to reference Crim J. Anterior compression fracture. In: Ross JS, Moore KR, editors. Diagnostic imaging: Spine. 3rd ed. Philadelphia: Elsevier; 2015. p. 330–333. Crim J. Anterior compression fracture. In: Ross JS, Moore KR, editors. Diagnostic imaging: Spine. 3rd ed. Philadelphia: Elsevier; 2015. p. 330–333.
24.
go back to reference Wang CK, Tsai JM, Chuang MT, Wang MT, Huang KY, Lin RM. Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology. 2013;269(2):525–33.CrossRefPubMed Wang CK, Tsai JM, Chuang MT, Wang MT, Huang KY, Lin RM. Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology. 2013;269(2):525–33.CrossRefPubMed
25.
go back to reference Mei K, Schwaiger BJ, Kopp FK, Ehn S, Gersing AS, Kirschke JS, et al. Bone mineral density measurements in vertebral specimens and phantoms using dual-layer spectral computed tomography. Sci Rep. 2017;7(1):17519.CrossRefPubMedPubMedCentral Mei K, Schwaiger BJ, Kopp FK, Ehn S, Gersing AS, Kirschke JS, et al. Bone mineral density measurements in vertebral specimens and phantoms using dual-layer spectral computed tomography. Sci Rep. 2017;7(1):17519.CrossRefPubMedPubMedCentral
26.
go back to reference Schellinger D, Lin CS, Fertikh D, Lee JS, Lauerman WC, Henderson F, et al. Normal lumbar vertebrae: anatomic, age, and sex variance in subjects at proton MR spectroscopy—initial experience. Radiology. 2000;215(3):910–6.CrossRefPubMed Schellinger D, Lin CS, Fertikh D, Lee JS, Lauerman WC, Henderson F, et al. Normal lumbar vertebrae: anatomic, age, and sex variance in subjects at proton MR spectroscopy—initial experience. Radiology. 2000;215(3):910–6.CrossRefPubMed
Metadata
Title
Three-material decomposition with dual-layer spectral CT compared to MRI for the detection of bone marrow edema in patients with acute vertebral fractures
Authors
Benedikt J. Schwaiger
Alexandra S. Gersing
Johannes Hammel
Kai Mei
Felix K. Kopp
Jan S. Kirschke
Ernst J. Rummeny
Klaus Wörtler
Thomas Baum
Peter B. Noël
Publication date
01-11-2018
Publisher
Springer Berlin Heidelberg
Published in
Skeletal Radiology / Issue 11/2018
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-018-2981-x

Other articles of this Issue 11/2018

Skeletal Radiology 11/2018 Go to the issue